Publication Cover
Amyloid
The Journal of Protein Folding Disorders
Volume 24, 2017 - Issue 3
367
Views
10
CrossRef citations to date
0
Altmetric
Review Article

Mining databases for protein aggregation: a review

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 143-152 | Received 02 Feb 2017, Accepted 07 Jul 2017, Published online: 18 Jul 2017

References

  • Aguzzi A, O'Connor T. Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov. 2010;9:237–248.
  • Eisele YS, Monteiro C, Fearns C, et al. Targeting protein aggregation for the treatment of degenerative diseases. Nat Rev Drug Discov. 2015;14:759–780.
  • Frokjaer S, Otzen DE. Protein drug stability: a formulation challenge. Nat Rev Drug Discov. 2005;4:298–306.
  • Mitraki A. Protein aggregation from inclusion bodies to amyloid and biomaterials. Adv Protein Chem Struct Biol. 2010;79:89–125.
  • Cherny I, Gazit E. Amyloids: not only pathological agents but also ordered nanomaterials. Angew Chem Int Ed Engl. 2008;47:4062–4069.
  • Sipe JD, Benson MD, Buxbaum JN, et al. Nomenclature 2014: amyloid fibril proteins and clinical classification of the amyloidosis. Amyloid. 2014;21:221–224.
  • Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci. 2003;4:49–60.
  • Sipe JD, Benson MD, Buxbaum JN, et al. Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid. 2016;23:209–213.
  • Ross CA, Poirier MA. Opinion: what is the role of protein aggregation in neurodegeneration? Nat Rev Mol Cell Biol. 2005;6:891–898.
  • Agrawal NJ, Kumar S, Wang X, et al. Aggregation in protein-based biotherapeutics: computational studies and tools to identify aggregation-prone regions. J Pharm Sci. 2011;100:5081–5095.
  • Fandrich M. Structure and formation of amyloid fibrils. Acta Histochem. 2003;105:379.
  • Hammer ND, Wang X, McGuffie BA, et al. Amyloids: friend or foe? J Alzheimers Dis. 2008;13:407–419.
  • Iconomidou VA, Vriend G, Hamodrakas SJ. Amyloids protect the silkmoth oocyte and embryo. FEBS Lett. 2000;479:141–145.
  • Iconomidou VA, Chryssikos GD, Gionis V, et al. Amyloid-like fibrils from an 18-residue peptide analogue of a part of the central domain of the B-family of silkmoth chorion proteins. FEBS Lett. 2001;499:268–273.
  • Fandrich M. On the structural definition of amyloid fibrils and other polypeptide aggregates. Cell Mol Life Sci. 2007;64:2066–2078.
  • Sunde M, Blake C. The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv Protein Chem. 1997;50:123–159.
  • Geddes AJ, Parker KD, Atkins ED, et al. “Cross-beta” conformation in proteins. J Mol Biol. 1968;32:343–358.
  • Eichner T, Radford SE. A diversity of assembly mechanisms of a generic amyloid fold. Mol Cell. 2011;43:8–18.
  • Ashkenazi Y, Hersko C, Gafni J, et al. Chemical aspects of amyloid-Congo red binding. Isr J Med Sci. 1967;3:572–574.
  • Sunde M, Serpell LC, Bartlam M, et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol. 1997;273:729–739.
  • Chiti F, Calamai M, Taddei N, et al. Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases. Proc Natl Acad Sci USA. 2002;99:16419–16426.
  • Lopez de la Paz M, Serrano L. Sequence determinants of amyloid fibril formation. Proc Natl Acad Sci USA. 2004;101:87–92.
  • Knowles TP, Waudby CA, Devlin GL, et al. An analytical solution to the kinetics of breakable filament assembly. Science. 2009;326:1533–1537.
  • Knowles TP, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol. 2014;15:384–396.
  • Kelly JW. Mechanisms of amyloidogenesis. Nat Struct Biol. 2000;7:824–826.
  • Castillo V, Ventura S. Amyloidogenic regions and interaction surfaces overlap in globular proteins related to conformational diseases. PLoS Comput Biol. 2009;5:e1000476.
  • Tsolis AC, Papandreou NC, Iconomidou VA, et al. A consensus method for the prediction of ‘aggregation-prone’ peptides in globular proteins. PLoS One. 2013;8:e54175.
  • Nelson R, Eisenberg D. Recent atomic models of amyloid fibril structure. Curr Opin Struct Biol. 2006;16:260–265.
  • Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem. 2006;75:333–366.
  • Apweiler R, Bairoch A, Wu CH. Protein sequence databases. Curr Opin Chem Biol. 2004;8:76–80.
  • Xenarios I, Eisenberg D. Protein interaction databases. Curr Opin Biotechnol. 2001;12:334–339.
  • Chiti F, Webster P, Taddei N, et al. Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci USA. 1999;96:3590–3594.
  • Hamodrakas SJ. Protein aggregation and amyloid fibril formation prediction software from primary sequence: towards controlling the formation of bacterial inclusion bodies. FEBS J. 2011;278:2428–2435.
  • Ahmed AB, Kajava AV. Breaking the amyloidogenicity code: methods to predict amyloids from amino acid sequence. FEBS Lett. 2013;587:1089–1095.
  • De Baets G, Schymkowitz J, Rousseau F. Predicting aggregation-prone sequences in proteins. Essays Biochem. 2014;56:41–52.
  • Boutet E, Lieberherr D, Tognolli M, et al. UniProtKB/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: how to use the entry view. Methods Mol Biol. 2016;1374:23–54.
  • UniProt C. The Universal Protein Resource (UniProt). Nucleic Acids Res. 2007;35:D193–D197.
  • Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.
  • Thompson MJ, Sievers SA, Karanicolas J, et al. The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci USA. 2006;103:4074–4078.
  • Goldschmidt L, Teng PK, Riek R, et al. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci USA. 2010;107:3487–3492.
  • Belli M, Ramazzotti M, Chiti F. Prediction of amyloid aggregation in vivo. EMBO Rep. 2011;12:657–663.
  • Tian J, Wu N, Guo J, et al. Prediction of amyloid fibril-forming segments based on a support vector machine. BMC Bioinformatics. 2009;10:S45.
  • Linding R, Schymkowitz J, Rousseau F, et al. A comparative study of the relationship between protein structure and beta-aggregation in globular and intrinsically disordered proteins. J Mol Biol. 2004;342:345–353.
  • de Groot NS, Castillo V, Grana-Montes R, et al. AGGRESCAN: method, application, and perspectives for drug design. Methods Mol Biol. 2012;819:199–220.
  • Frousios KK, Iconomidou VA, Karletidi CM, et al. Amyloidogenic determinants are usually not buried. BMC Struct Biol. 2009;9:44.
  • Citron M, Oltersdorf T, Haass C, et al. Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production. Nature. 1992;360:672–674.
  • Siepen JA, Westhead DR. The fibril_one on-line database: mutations, experimental conditions, and trends associated with amyloid fibril formation. Protein Sci. 2002;11:1862–1866.
  • Sawaya MR, Sambashivan S, Nelson R, et al. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature. 2007;447:453–457.
  • Pawlicki S, Le Bechec A, Delamarche C. AMYPdb: a database dedicated to amyloid precursor proteins. BMC Bioinformatics. 2008;9:273.
  • Sigrist CJ, Cerutti L, Hulo N, et al. PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinformatics. 2002;3:265–274.
  • Smaoui MR, Poitevin F, Delarue M, et al. Computational assembly of polymorphic amyloid fibrils reveals stable aggregates. Biophys J. 2013;104:683–693.
  • Teng PK, Eisenberg D. Short protein segments can drive a non-fibrillizing protein into the amyloid state. Protein Eng Des Sel. 2009;22:531–536.
  • Tsiolaki PL, Louros NN, Hamodrakas SJ, et al. Exploring the 'aggregation-prone' core of human Cystatin C: a structural study. J Struct Biol. 2015;191:272–280.
  • Louros NN, Tsiolaki PL, Zompra AA, et al. Structural studies and cytotoxicity assays of 'aggregation-prone' IAPP(8-16) and its non-amyloidogenic variants suggest its important role in fibrillogenesis and cytotoxicity of human amylin. Biopolymers. 2015;104:196–205.
  • Louros NN, Tsiolaki PL, Griffin MD, et al. Chameleon 'aggregation-prone' segments of apoA-I: a model of amyloid fibrils formed in apoA-I amyloidosis. Int J Biol Macromol. 2015;79:711–718.
  • Tsiolaki PL, Hamodrakas SJ, Iconomidou VA. The pentapeptide LQVVR plays a pivotal role in human cystatin C fibrillization. FEBS Lett. 2015;589:159–164.
  • Trainor K, Broom A, Meiering EM. Exploring the relationships between protein sequence, structure and solubility. Curr Opin Struct Biol. 2017;42:136–146.
  • Beerten J, Van Durme J, Gallardo R, et al. WALTZ-DB: a benchmark database of amyloidogenic hexapeptides. Bioinformatics. 2015;31:1698–1700.
  • Maurer-Stroh S, Debulpaep M, Kuemmerer N, et al. Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat Meth. 2010;7:237–242.
  • Eisenberg D, Jucker M. The amyloid state of proteins in human diseases. Cell. 2012;148:1188–1203.
  • Thangakani AM, Nagarajan R, Kumar S, et al. CPAD, curated protein aggregation database: a repository of manually curated experimental data on protein and peptide aggregation. PLoS One. 2016;11:e0152949.
  • Rose PW, Prlic A, Altunkaya A, et al. The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 2017;45:D271–D281.
  • Wozniak PP, Kotulska M. AmyLoad: website dedicated to amyloidogenic protein fragments. Bioinformatics. 2015;31:3395–3397.
  • Conchillo-Sole O, de Groot NS, Aviles FX, et al. AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics. 2007;8:65.
  • Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, et al. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol. 2004;22:1302–1306.
  • Pepys MB. Amyloidosis. Annu Rev Med. 2006;57:223–241.
  • Rowczenio DM, Noor I, Gillmore JD, et al. Online registry for mutations in hereditary amyloidosis including nomenclature recommendations. Hum Mutat. 2014;35:E2403–24E2412.
  • Wood EH. MEDLINE: the options for health professionals. J Am Med Inform Assoc. 1994;1:372–380.
  • Hamosh A, Scott AF, Amberger JS, et al. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005;33:D514–D517.
  • Sanchorawala V. Light-chain (AL) amyloidosis: diagnosis and treatment. Clin J Am Soc Nephrol. 2006;1:1331–1341.
  • Bodi K, Prokaeva T, Spencer B, et al. AL-Base: a visual platform analysis tool for the study of amyloidogenic immunoglobulin light chain sequences. Amyloid. 2009;16:1–8.
  • Bertram L, McQueen MB, Mullin K, et al. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet. 2007;39:17–23.
  • Lill CM, Roehr JT, McQueen MB, et al. Comprehensive research synopsis and systematic meta-analyses in Parkinson's disease genetics: the PDGene database. PLoS Genet. 2012;8:e1002548.
  • Yang JO, Kim WY, Jeong SY, et al. PDbase: a database of Parkinson's disease-related genes and genetic variation using substantia nigra ESTs. BMC Genomics. 2009;10:S32.
  • Cruts M, Theuns J, Van Broeckhoven C. Locus-specific mutation databases for neurodegenerative brain diseases. Hum Mutat. 2012;33:1340–1344.
  • Shobana R, Pandaranayaka EP. ProADD: a database on protein aggregation diseases. Bioinformation. 2014;10:390–392.
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504.
  • Allen NC, Bagade S, McQueen MB, et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet. 2008;40:827–834.
  • Buchel F, Rodriguez N, Swainston N, et al. Path2Models: large-scale generation of computational models from biochemical pathway maps. BMC Syst Biol. 2013;7:116
  • Benson DA, Karsch-Mizrachi I, Lipman DJ, et al. GenBank. Nucleic Acids Res. 2000;28:15–18.
  • Larkin MA, Blackshields G, Brown NP, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948.
  • Rost B. Review: protein secondary structure prediction continues to rise. J Struct Biol. 2001;134:204–218.
  • Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577–2637.
  • Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol. 1990;215:403–410.
  • Zibaee S, Makin OS, Goedert M, et al. A simple algorithm locates beta-strands in the amyloid fibril core of alpha-synuclein, Abeta, and tau using the amino acid sequence alone. Protein Sci. 2007;16:906–918.
  • Garbuzynskiy SO, Lobanov MY, Galzitskaya OV. FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioinformatics. 2010;26:326–332.
  • Walsh I, Seno F, Tosatto SC, et al. PASTA 2.0: an improved server for protein aggregation prediction. Nucleic Acids Res. 2014;42:W301–W307.
  • Kim C, Choi J, Lee SJ, et al. NetCSSP: web application for predicting chameleon sequences and amyloid fibril formation. Nucleic Acids Res. 2009;37:W469–W473.
  • Thangakani AM, Kumar S, Nagarajan R, et al. GAP: towards almost 100 percent prediction for beta-strand-mediated aggregating peptides with distinct morphologies. Bioinformatics. 2014;30:1983–1990.
  • Bryan AW Jr, Menke M, Cowen LJ, et al. BETASCAN: probable beta-amyloids identified by pairwise probabilistic analysis. PLoS Comput Biol. 2009;5:e1000333.
  • Tartaglia GG, Vendruscolo M. The Zyggregator method for predicting protein aggregation propensities. Chem Soc Rev. 2008;37:1395–1401.
  • Gasior P, Kotulska M. FISH Amyloid – a new method for finding amyloidogenic segments in proteins based on site specific co-occurrence of aminoacids. BMC Bioinformatics. 2014;15:54.
  • Lill CM, Abel O, Bertram L, et al. Keeping up with genetic discoveries in amyotrophic lateral sclerosis: the ALSoD and ALSGene databases. Amyotroph Lateral Scler. 2011;12:238–249.
  • Becker KG, Barnes KC, Bright TJ, et al. The genetic association database. Nat Genet. 2004;36:431–432.
  • Stenson PD, Ball EV, Mort M, et al. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat. 2003;21:577–581.
  • Keshava Prasad TS, Goel R, Kandasamy K, et al. Human Protein Reference Database—2009 update. Nucleic Acids Res. 2009;37:D767–D772.
  • Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:D480–D484.
  • Vucetic S, Obradovic Z, Vacic V, et al. DisProt: a database of protein disorder. Bioinformatics. 2005;21:137–140.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.