498
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

The modulation of reward priority by top-down knowledge

&
Pages 206-228 | Received 01 Jul 2014, Accepted 17 Oct 2014, Published online: 09 Jan 2015

REFERENCES

  • Anderson, B. A., & Yantis, S. (2012). Value-driven attentional and oculomotor capture during goal-directed, unconstrained viewing. Attention, Perception, & Psychophysics, 74(8), 1644–1653. doi:10.3758/s13414-012-0348-2
  • Anderson, B. A., & Yantis, S. (2013). Persistence of value-driven attentional capture. Journal of Experimental Psychology. Human Perception and Performance, 39(1), 6–9. doi:10.1037/a0030860
  • Anderson, B. A., Laurent, P. A., & Yantis, S. (2011a). Value-driven attentional capture. Proceedings of the National Academy of Sciences, 108(25), 10367–10371. doi:10.1073/pnas.1104047108
  • Anderson, B. A., Laurent, P. A., & Yantis, S. (2011b). Learned value magnifies salience-based attentional capture. PLoS One, 6(11), e27926. doi:10.1371/journal.pone.0027926.g001
  • Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: a failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–443. doi:10.1016/j.tics.2012.06.010
  • Camara, E., Manohar, S., & Husain, M. (2013). Past rewards capture spatial attention and action choices. Experimental Brain Research, 230(3), 291–300. doi:10.1007/s00221-013-3654-6
  • Della Libera, C., & Chelazzi, L. (2006). Visual selective attention and the effects of monetary rewards. Psychological Science, 17(3), 222–227. doi:10.1111/j.1467-9280.2006.01689.x
  • Della Libera, C., & Chelazzi, L. (2009). Learning to attend and to ignore is a matter of gains and losses. Psychological Science, 20(6), 778–784. doi:10.1111/j.1467-9280.2009.02360.x
  • Della Libera, C., Perlato, A., & Chelazzi, L. (2011). Dissociable effects of reward on attentional learning: from passive associations to active monitoring. PLoS One, 6(4), e19460. doi:10.1371/journal.pone.0019460.g002
  • Dorris, M. C., & Glimcher, P. W. (2004). Activity in posterior parietal cortex is correlated with the relative subjective desirability of action. Neuron, 44(2), 365–378. doi:10.1016/j.neuron.2004.09.009
  • Egeth, H. E., & Yantis, S. (1997). Visual attention: control, representation, and time course. Annual Review of Psychology, 48, 269–297. doi:10.1146/annurev.psych.48.1.269
  • Failing, M. F., & Theeuwes, J. (2014). Exogenous visual orienting by reward. Journal of Vision, 14(5), 6–6. doi:10.1167/14.5.6
  • Geng, J. J., & Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception & Psychophysics, 67(7), 1252–1268.
  • Hickey, C., & van Zoest, W. (2012). Reward creates oculomotor salience. Current Biology, 22(7), R219–R220. doi:10.1016/j.cub.2012.02.007
  • Hickey, C., & van Zoest, W. (2013). Reward-associated stimuli capture the eyes in spite of strategic attentional set. Vision Research, 92, 67–74. doi:10.1016/j.visres.2013.09.008
  • Hickey, C., Chelazzi, L., & Theeuwes, J. (2010). Reward changes salience in human vision via the anterior cingulate. Journal of Neuroscience, 30(33), 11096–11103. doi:10.1523/JNEUROSCI.1026-10.2010
  • Jiang, Y. V., Swallow, K. M., & Rosenbaum, G. M. (2013). Guidance of spatial attention by incidental learning and endogenous cuing. Journal of Experimental Psychology. Human Perception and Performance, 39(1), 285–297. doi:10.1037/a0028022
  • Jonides, J. (1981). Voluntary vs. automatic control over the mind's eye's movement. In J. B. Long & A. D. Baddeley (Eds.), Attention and Performance IX. Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Kiss, M., Driver, J., & Eimer, M. (2009). Reward priority of visual target singletons modulates event-related potential signatures of attentional selection. Psychological Science, 20(2), 245–251. doi:10.1111/j.1467-9280.2009.02281.x
  • Klein, R. (1988). Inhibitory tagging system facilitates visual search. Nature, 334(6181), 430–431.
  • Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4(4), 138–147.
  • Knutson, B., & Greer, S. M. (2008). Anticipatory affect: neural correlates and consequences for choice. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1511), 3771–3786. doi:10.1098/rstb.2008.0155
  • Krebs, R. M., Boehler, C. N., Appelbaum, L. G., & Woldorff, M. G. (2013). Reward associations reduce behavioral interference by changing the temporal dynamics of conflict processing. PLoS One, 8(1), e53894. doi:10.1371/journal.pone.0053894.t001
  • Krebs, R. M., Boehler, C. N., Egner, T., & Woldorff, M. G. (2011). The neural underpinnings of how reward associations can both guide and misguide attention. Journal of Neuroscience, 31(26), 9752–9759. doi:10.1523/JNEUROSCI.0732-11.2011
  • Krebs, R. M., Boehler, C. N., Roberts, K. C., Song, A. W., & Woldorff, M. G. (2012). The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the integration of reward prospect and attentional task demands. Cerebral Cortex, 22(3), 607–615. doi:10.1093/cercor/bhr134
  • Kristjánsson, A., Sigurjónsdóttir, O., & Driver, J. (2010). Fortune and reversals of fortune in visual search: Reward contingencies for pop-out targets affect search efficiency and target repetition effects. Attention, Perception, & Psychophysics, 72(5), 1229–1236. doi:10.3758/APP.72.5.1229
  • Le Pelley, M. E., Mitchell, C. J., & Johnson, A. M. (2013). Outcome value influences attentional biases in human associative learning: Dissociable effects of training and instruction. Journal of Experimental Psychology: Animal Behavior Processes, 39(1), 39–55. doi:10.1037/a0031230
  • Le Pelley, M. E., Pearson, D., Griffiths, O., & Beesley, T. (2014). When goals conflict with values: Counterproductive attentional and oculomotor capture by reward-related stimuli. Journal of Experiment Psychology: General. Advance online publication.
  • Lee, J., & Shomstein, S. (2013). The differential effects of reward on space- and object-based attentional allocation. Journal of Neuroscience, 33(26), 10625–10633. doi:10.1523/JNEUROSCI.5575-12.2013
  • Luck, S. J., & Hillyard, S. A. (1994). Spatial filtering during visual search: evidence from human electrophysiology. Journal of Experimental Psychology. Human Perception and Performance, 20(5), 1000–1014.
  • Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22(6), 657–672.
  • Müller, H. J., & Rabbitt, P. M. (1989). Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. Journal of Experimental Psychology. Human Perception and Performance, 15(2), 315.
  • O'Doherty, J. P., Buchanan, T. W., Seymour, B., & Dolan, R. J. (2006). Predictive neural coding of reward preference involves dissociable responses in human ventral midbrain and ventral striatum. Neuron, 49(1), 157–166. doi:10.1016/j.neuron.2005.11.014
  • Peck, C. J., Jangraw, D. C., Suzuki, M., Efem, R., & Gottlieb, J. (2009). Reward modulates attention independently of action value in posterior parietal cortex. Journal of Neuroscience, 29(36), 11182–11191. doi:10.1523/JNEUROSCI.1929-09.2009
  • Platt, M. L., & Glimcher, P. W. (1999). Neural correlates of decision variables in parietal cortex. Nature, 400(6741), 233–238. doi:10.1038/22268
  • Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25.
  • Qi, S., Zeng, Q., Ding, C., & Li, H. (2013). Neural correlates of reward-driven attentional capture in visual search. Brain Research, 1532, 32–43. doi:10.1016/j.brainres.2013.07.044
  • Raymond, J. E., & O'Brien, J. L. (2009). Selective visual attention and motivation: the consequences of value learning in an attentional blink task. Psychological Science, 20(8), 981–988.
  • Schevernels, H., Krebs, R. M., Santens, P., Woldorff, M. G., & Boehler, C. N. (2014). Task preparation processes related to reward prediction precede those related to task-difficulty expectation. NeuroImage, 84, 639–647. doi:10.1016/j.neuroimage.2013.09.039
  • Stankevich, B. A., & Geng, J. J. (2014). Reward associations and spatial probabilities produce additive effects on attentional selection. Attention, Perception, & Psychophysics, 76(8), 2315–2325. doi:10.1037/xge0000037

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.