536
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Individual differences in spatial frequency processing in scene perception: the influence of autism-related traits

&
Pages 115-131 | Received 23 Feb 2016, Accepted 03 Jun 2016, Published online: 24 Jul 2016

References

  • Ahissar, M., & Hochstein, S. (2004). The reverse hierarchy theory of visual perceptual learning. Trends in Cognitive Sciences, 8, 457–464. doi: 10.1016/j.tics.2004.08.011
  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csáki (Eds.), Proceedings of the 2nd International Symposium on Information Theory (pp. 267–281). Budapest: Akadémiai Kiadó.
  • Allison, C., Auyeung, B., & Baron-Cohen, S. (2012). Toward brief “Red Flags” for autism screening: The short autism spectrum quotient and the short quantitative checklist for autism in toddlers in 1,000 cases and 3,000 controls. Journal of the American Academy of Child & Adolescent Psychiatry, 51, 202–212. doi: 10.1016/j.jaac.2011.11.003
  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders DSM-IV-TR fifth edition (5th ed.). San Francisco, CA: American Psychiatric Publishing, Inc.
  • Bar, M. (2003). A cortical mechanism for triggering top-down facilitation in visual object recognition. Journal of Cognitive Neuroscience, 15, 600–609. doi: 10.1162/089892903321662976
  • Barman, A., Richter, S., Soch, J., Deibele, A., Richter, A., Assmann, A., … Schott, B. H. (2015). Gender-specific modulation of neural mechanisms underlying social reward processing by autism quotient. Social Cognitive and Affective Neuroscience, 10, 1537–1547. doi: 10.1093/scan/nsv044
  • Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-spectrum quotient (AQ): Evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31, 5–17. doi: 10.1023/A:1005653411471
  • Brand, J., & Johnson, A. P. (2014). Attention to local and global levels of hierarchical Navon figures affects rapid scene categorization. Frontiers in Psychology, 5, 1–19. doi:10.3389/fpsyg.2014.01274
  • Bullier, J. (2001). Integrated model of visual processing. Brain Research Reviews, 36, 96–107. doi: 10.1016/S0165-0173(01)00085-6
  • Chong, S. C., & Treisman, A. (2005). Statistical processing: Computing the average size in perceptual groups. Vision Research, 45, 891–900. doi: 10.1016/j.visres.2004.10.004
  • Church, B., Krauss, M. S., Lopata, C., Toomey, J. A., Thomeer, M. L., Coutinho, M. V., … Mercado, E. (2010). Atypical categorization in children with high-functioning autism spectrum disorder. Psychonomic Bulletin, & Review, 17, 862–868. doi: 10.3758/PBR.17.6.862
  • Collin, C. A. (2006). Spatial-frequency thresholds for object categorisation at basic and subordinate levels. Perception-London, 35, 41–52. doi: 10.1068/p5445
  • Collin, C. A., & Mcmullen, P. A. (2005). Subordinate-level categorization relies on high spatial frequencies to a greater degree than basic-level categorization. Perception & Psychophysics, 67, 354–364. doi: 10.3758/BF03206498
  • Edwards, D. J., Perlman, A., & Reed, P. (2012). Unsupervised categorization in a sample of children with autism spectrum disorders. Research in Developmental Disabilities, 33, 1264–1269. doi: 10.1016/j.ridd.2012.02.021
  • Gastgeb, H. Z., Strauss, M. S., & Minshew, N. J. (2006). Do individuals with autism process categories differently? The effect of typicality and development. Child Development, 77, 1717–1729. doi: 10.1111/j.1467-8624.2006.00969.x
  • Greene, M. R., & Oliva, A. (2009). Recognition of natural scenes from global properties: Seeing the forest without representing the trees. Cognitive Psychology, 58, 137–176. doi: 10.1016/j.cogpsych.2008.06.001
  • Happé, F., & Booth, R. (2008). The power of the positive: Revisiting weak coherence in autism spectrum disorders. The Quarterly Journal of Experimental Psychology, 61, 50–63. doi: 10.1080/17470210701508731
  • Hegdé, J. (2008). Time course of visual perception: Coarse-to-fine processing and beyond. Progress in Neurobiology, 84, 405–439. doi: 10.1016/j.pneurobio.2007.09.001
  • Hochstein, S. & Ahissar, M. (2002). View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron, 36, 791–804. doi: 10.1016/S0896-6273(02)01091-7
  • Hoekstra, R. A., Bartels, M., Cath, D. C., & Boomsma, D. I. (2008). Factor structure, reliability and criterion validity of the autism-spectrum quotient (AQ): A study in Dutch population and patient groups. Journal of Autism and Developmental Disorders, 38, 1555–1566. doi: 10.1007/s10803-008-0538-x
  • Ingersoll, B., Hopwood, C. J., Wainer, A., & Donnellan, M. A. (2011). Comparison of three self-report measures of the broader autism phenotype in a nonclinical sample. Journal of Autism and Developmental Disorders, 41, 1646–1657. doi: 10.1007/s10803-011-1192-2
  • Joubert, O., Fize, D., Rousselet, G., & Fabre-Thorpe, M. (2008). Early interference of context congruence on object processing in rapid visual categorization of natural scenes. Journal of Vision, 8, 1–18. doi:10.1167/8.13.11
  • Kauffmann, L., Chauvin, A., Pichat, C., & Peyrin, C. (2015). Effective connectivity in the neural network underlying coarse-to-fine categorization of visual scenes. A dynamic causal modeling study. Brain and Cognition, 99, 46–56.
  • Kauffmann, L., Ramanoël, S., & Peyrin, C. (2014). The neural bases of spatial frequency processing during scene perception. Frontiers in Integrative Neuroscience, 8, 1–14. doi:10.3389/fnint.2014.00037
  • Koldewyn, K., Jiang, Y. V., Weigelt, S., & Kanwisher, N. (2013). Global/local processing in autism: Not a disability, but a disinclination. Journal of Autism and Developmental Disorders, 43, 2329–2340. doi: 10.1007/s10803-013-1777-z
  • Larson, A. M., Freeman, T. E., Ringer, R. V., & Loschky, L. C. (2014). The spatiotemporal dynamics of scene gist recognition. Journal of Experimental Psychology: Human Perception and Performance, 40, 471–487.
  • Loschky, L. C., & Simons, D. J. (2004). The effects of spatial frequency content and color on scene gist perception. Journal of Vision, 4, 881–881. doi: 10.1167/4.8.881
  • Mack, M. L., & Palmeri, T. J. (2015). The dynamics of categorization: Unraveling rapid categorization. Journal of Experimental Psychology: General, 144, 551–569. doi: 10.1037/a0039184
  • Macmillan, N. A., & Creelman, C. D. (1991). Detection theory: A user’s guide. Cambridge: Cambridge University Press.
  • McArdle, B. H. (1987). The significance of differences between means. A simulation study. Comparative Biochemistry and Physiology, 87A, 979–982. doi: 10.1016/0300-9629(87)90023-5
  • McCullagh, P. (1984). Generalized linear models. European Journal of Operational Research, 16, 285–292. doi: 10.1016/0377-2217(84)90282-0
  • Minshew, N. J., Meyer, J., & Goldstein, G. (2002). Abstract reasoning in autism: A disassociation between concept formation and concept identification. Neuropsychology, 16, 327–334. doi: 10.1037/0894-4105.16.3.327
  • Mottron, L., & Burack, J. (2006). Autism: A different perception. Journal of Autism and Developmental Disorders, 36, 1–3. doi: 10.1007/s10803-005-0048-z
  • Mottron, L., Dawson, M., Soulières, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36, 27–43. doi: 10.1007/s10803-005-0040-7
  • Musel, B., Chauvin, A., Guyader, N., Chokron, S., & Peyrin, C. (2012). Is coarse-to-fine strategy sensitive to normal aging. PloS one, 7, 1–6. doi:10.1371/journal.pone.0038493
  • Nishiyama, T., Suzuki, M., Adachi, K., Sumi, S., Okada, K., Kishino, H., … Kanne, S. M. (2014). Comprehensive comparison of self-administered questionnaires for measuring quantitative autistic traits in adults. Journal of Autism and Developmental Disorders, 44, 993–1007. doi: 10.1007/s10803-013-2020-7
  • Oliva, A. (2013). The art of hybrid images: Two for the view of one. Art & Perception, 1, 65–74. doi: 10.1163/22134913-00002004
  • Oliva, A., & Schyns, P. G. (1997). Coarse blobs or fine edges? Evidence that information diagnosticity changes the perception of complex visual stimuli. Cognitive Psychology, 34, 72–107. doi: 10.1006/cogp.1997.0667
  • Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision, 42, 145–175. doi: 10.1023/A:1011139631724
  • Palmeri, T. J., & Mack, M. L. (2015). How experimental trial context affects perceptual categorization. Frontiers in Psychology, 6, 1–5. doi:10.3389/fpsyg.2015.00180
  • Parker, D. M., Lishman, J. R., & Hughes, J. (1992). Temporal integration of spatially filtered visual images. Perception, 21, 147–160. doi: 10.1068/p210147
  • Parker, D. M., Lishman, J. R., & Hughes, J. (1996). Role of coarse and fine information in face and object perception. Journal of Experimental Psychology: Human Perception and Performance, 22, 1448–1466.
  • Peirce, J. W. (2008). Generating stimuli for neuroscience using PsychoPy. Frontiers in Neuroinformatics, 2, 1–8. doi:10.3389/neuro.11.010.2008
  • Peyrin, C., Michel, C. M., Schwartz, S., Thut, G., Seghier, M., Landis, T., … Vuilleumier, P. (2010). The neural substrates and timing of top–down processes during coarse-to-fine categorization of visual scenes: A combined fMRI and ERP study. Journal of Cognitive Neuroscience, 22, 2768–2780. doi: 10.1162/jocn.2010.21424
  • Plaisted, K. C. (2001). Reduced generalization in autism: An alternative to weak central coherence. The development of autism: Perspectives from Theory and Research, 2, 149–169.
  • R Core Team. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0
  • Rotshtein, P., Schofield, A., Funes, M. J., & Humphreys, G. W. (2010). Effects of spatial frequency bands on perceptual decision: It is not the stimuli but the comparison. Journal of Vision, 10, 1–20. doi:10.1167/10.10.25
  • Ruzich, E., Allison, C., Smith, P., Watson, P., Auyeung, B., Ring, H., & Baron-Cohen, S. (2015). Measuring autistic traits in the general population: A systematic review of the autism-spectrum quotient (AQ) in a nonclinical population sample of 6,900 typical adult males and females. Molecular Autism, 6, 1–12. doi:10.1186/2040-2392-6-2
  • Sanocki, T. (2003). Representation and perception of scenic layout. Cognitive Psychology, 47, 43–86. doi: 10.1016/S0010-0285(03)00002-1
  • Sasson, N. J., Nowlin, R. B., & Pinkham, A. E. (2013). Social cognition, social skill, and the broad autism phenotype. Autism, 17, 655–667. doi: 10.1177/1362361312455704
  • Sasson, N. J., Turner-Brown, L. M., Holtzclaw, T. N., Lam, K. S., & Bodfish, J. W. (2008). Children with autism demonstrate circumscribed attention during passive viewing of complex social and nonsocial picture arrays. Autism Research, 1, 31–42. doi: 10.1002/aur.4
  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464. doi: 10.1214/aos/1176344136
  • Schyns, P. G., & Oliva, A. (1994). From blobs to boundary edges: Evidence for time- and spatial-scale-dependent scene recognition. Psychological Science, 5, 195–200. doi: 10.1111/j.1467-9280.1994.tb00500.x
  • Schyns, P. G., & Oliva, A. (1999). Dr. Angry and Mr. Smile: When categorization flexibly modifies the perception of faces in rapid visual presentations. Cognition, 69, 243–265. doi: 10.1016/S0010-0277(98)00069-9
  • Sutherland, A., & Crewther, D. P. (2010). Magnocellular visual evoked potential delay with high autism spectrum quotient yields a neural mechanism for altered perception. Brain, 1–9. doi:10.1093/brain/awq122
  • Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520–522. doi: 10.1038/381520a0
  • VanRullen, R. (2011). Four common conceptual fallacies in mapping the time course of recognition. Frontiers in Psychology, 2, 1–6. doi:10.3389/fpsyg.2011.00365
  • Wakabayashi, A., Baron-Cohen, S., & Wheelwright, S. (2006). Are autistic traits an independent personality dimension? A study of the Autism-Spectrum Quotient (AQ) and the NEO-PI-R. Personality and Individual Differences, 41, 873–883. doi: 10.1016/j.paid.2006.04.003
  • Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. Transactions of the American Mathematical Society, 54, 426–426. doi: 10.1090/S0002-9947-1943-0012401-3
  • Wheelwright, S., Auyeung, B., Allison, C., & Baron-Cohen, S. (2010). Defining the broader, medium and narrow autism phenotype among parents using the Autism Spectrum Quotient (AQ). Molecular Autism, 1, 1–10. doi:10.1186/2040-2392-1-10
  • White, S., Coniston, D., Rogers, R., & Frith, U. (2011). Developing the Frith-happé animations: A quick and objective test of theory of mind for adults with autism. Autism Research, 4, 149–54. doi: 10.1002/aur.174
  • Wichmann, F. A., Braun, D. I., & Gegenfurtner, K. R. (2006). Phase noise and the classification of natural images. Vision Research, 46, 1520–1529. doi: 10.1016/j.visres.2005.11.008
  • Woodbury-Smith, M. R., Robinson, J., Wheelwright, S., & Baron-Cohen, S. (2005). Screening adults for Asperger syndrome using the AQ: A preliminary study of its diagnostic validity in clinical practice. Journal of Autism and Developmental Disorders, 35, 331–335. doi: 10.1007/s10803-005-3300-7
  • Young, J. S., Smith, D. V., Coutlee, C. G., & Huettel, S. A. (2015). Synchrony between sensory and cognitive networks is associated with subclinical variation in autistic traits. Frontiers in Human Neuroscience, 9, 1–10. doi:10.3389/fnhum.2015.00146

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.