580
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Investigating the parameters of transsaccadic memory: inhibition of return impedes information acquisition near a saccade target

, &
Pages 141-154 | Received 07 Mar 2016, Accepted 15 Jun 2016, Published online: 18 Jul 2016

References

  • Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science: A Journal of the American Psychological Society, 15(2), 106–111. doi:10.1167/2.7.273
  • Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321(5890), 851–854. doi:10.1126/science.1158023
  • Bell, B. A., Morgan, G. B., Schoeneberger, J. A., Loudermilk, B. L., Kromrey, J. D., & Ferron, J. M. (2010). Dancing the sample-size limbo with mixed models: How low can you go? SAS Global Forum, 4, 11–14.
  • Briand, K. A., Larrison, A. L., & Sereno, A. B. (2000). Inhibition of return in manual and saccadic response systems. Perception & Psychophysics, 62(8), 1512–1524. doi:10.3758/BF03212152
  • Castel, A. D., Pratt, J., & Craik, F. I. M. (2003). The role of spatial working memory in inhibition of return: Evidence from divided attention tasks. Perception & Psychophysics, 65(6), 970–981. doi:10.3758/BF03194827
  • Castiello, U., & Umiltà, C. (1990). Size of the attentional focus and efficiency of processing. Acta Psychologica, 73(3), 195–209. doi:10.1016/0001-6918(90)90022-8
  • Cnaan, A., Laird, N. M., & Slasor, P. (2014). Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Journal of Neuroscience Methods, 509(1), 805–820. doi:10.1002/(SICI)1097-0258(19971030)
  • Coëffé, C., & O’Regan, J. K. (1987). Reducing the influence of non-target stimuli on saccade accuracy: Predictability and latency effects. Vision Research, 27(2), 227–240. doi:10.1016/0042-6989(87)90185-4
  • Cohen, M. E., & Ross, L. E. (1978). Latency and accuracy characteristics of saccades and corrective saccades in children and adults. Journal of Experimental Child Psychology, 26(3), 517–27. doi:10.1016/0022-0965(78)90130-3
  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114. doi: 10.1017/S0140525X01003922
  • Dalmaijer, E. S., Mathôt, S., & Van der Stigchel, S. (2013). PyGaze: An open-source, cross-platform toolbox for minimal-effort programming of eyetracking experiments. Behavior Research Methods, 46(4), 1–16. doi:10.3758/s13428-013-0422-2
  • Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 36(12), 1827–1837. doi:10.1016/0042-6989(95)00294-4
  • Deubel, H., Schneider, W. X., & Bridgeman, B. (1996). Postsaccadic target blanking prevents saccadic suppression of image displacement. Vision Research, 36(7), 985–996. doi:10.1016/0042-6989(95)00203-0
  • Dienes, Z. (2011). Bayesian versus orthodox statistics: Which side are you on? Perspectives on Psychological Science, 6(3), 274–290. doi:10.1177/1745691611406920
  • Hilchey, M. D., Klein, R. M., & Satel, J. (2014). Returning to “inhibition of return” by dissociating long-term oculomotor IOR from short-term sensory adaptation and other nonoculomotor “inhibitory” cueing effects. Journal of Experimental Psychology. Human Perception and Performance, 40(4), 1603–16. doi:10.1037/a0036859
  • Hoffman, J. E., & Subramaniam, B. (1995). The role of visual attention in saccadic eye movements. Perception & Psychophysics, 57(6), 787–795. doi:10.3758/BF03206794
  • Hollingworth, A., & Henderson, H. J. (1998). Does consistent scene context facilitate object perception? Journal of Experimental Psychology: General, 127(4), 398–415. doi: 10.1037/0096-3445.127.4.398
  • Hollingworth, A., Richard, A. M., & Luck, S. J. (2008). Understanding the function of visual short-term memory: Transsaccadic memory, object correspondence, and gaze correction. Journal of Experimental Psychology, 137(1), 163–181. doi: 10.1037/0096-3445.137.1.163
  • Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299–314. doi:10.2307/1390807
  • Irwin, D. E. (1991). Information Integration across saccadic eye movements. Cognitive Psychology, 23, 420–456. doi: 10.1016/0010-0285(91)90015-G
  • Irwin, D. E., & Andrews, R. V. (1996). Integration and accumulation of information across saccadic eye movements. Attention and performance: Information integration in perception and communication, 16, 125–155.
  • Irwin, D. E., & Gordon, R. D. (1998). Eye Movements, attention and trans-saccadic memory. Visual Cognition, 5, 127–155. doi:10.1080/713756783
  • Johnson, J. S., Hollingworth, A., & Luck, S. J. (2008). The role of attention in the maintenance of feature bindings in visual short-term memory. Journal of Experimental Psychology, 34, 41–55.
  • Kenward, M. G., Roger, J. H., Process, L. D., Lodge, C. H., & Ox, O. (2013). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53(3), 983–997. doi: 10.2307/2533558
  • Kingstone, A., & Pratt, J. (1999). Inhibition of return is composed of attentional and oculomotor processes. Perception & Psychophysics, 61(6), 1046–54. doi:10.3758/BF03207612
  • Klein, R. M., & Ivanoff, J. (2000). Inhibition of return. Trends in Cognitive Sciences, 4(4), 138–147. doi: 10.1016/S1364-6613(00)01452-2
  • Klein, R. M., & MacInnes, W. J. (1999). Inhibition of return is a foraging facilitator in visual search. Psychological Science, 10(4), 346–352. doi:10.1111/1467-9280.00166
  • Kooi, F. L., Toet, A., Tripathy, S. P., & Levi, D. M. (1994). The effect of similarity and duration on spatial interaction in peripheral vision. Spatial Vision, 8(2), 255–279. doi: 10.1163/156856894X00350
  • Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. ( 2013). lmerTest: Tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). Retrieved from https://cran.r-project.org/web/packages/lmerTest/lmerTest.pdf
  • Levi, D. M. (2008). Crowding—An essential bottleneck for object recognition: A mini-review. Vision Research, 48(5), 635–654. doi:10.1016/j.visres.2007.12.009
  • Lindstrom, M. J., & Bates, D. M. (1990). Nonlinear mixed effects models for repeated measures data. Biometrics, 46(3), 673–687. doi: 10.2307/2532087
  • Luck, S. J., & Hollingworth, A. (2008). Visual memory (S. J. Luck & A. Hollingworth, Eds.). New York, NY: Oxford University Press. doi:10.1177/105345126600100312
  • Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(1996), 279–281. doi:10.1038/36846
  • Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17(3), 347–56. doi:10.1038/nn.3655
  • Martín-Arévalo, E., Kingstone, A., & Lupiáñez, J. (2012). Is “Inhibition of Return” due to the inhibition of the return of attention? The Quarterly Journal of Experimental Psychology, 66(2), 1–13. doi:10.1080/17470218.2012.711844
  • McCarley, J. S., Wang, R. F., Kramer, A. F., Irwin, D. E., & Peterson, M. S. (2003). How much memory does oculomotor search have? Psychological Science, 14(5), 422–426. doi:10.1111/1467-9280.01457
  • Müller, M. M., & Hübner, R. (2002). Can the spotlight of attention be shaped like a doughnut? Evidence from steady-state visual evoked potentials. Psychological Science: A Journal of the American Psychological Society, 13(2), 119–124. doi:10.1111/j.0956-7976.2002.t01-1-.x
  • Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. Attention and Performance: Control of Language Processes, 32, 531–556. doi:10.1162/jocn.1991.3.4.335
  • Pratt, J., Hillis, J., & Gold, J. M. (2001). The effect of the physical characteristics of cues and targets on facilitation and inhibition. Psychonomic Bulletin & Review, 8(3), 489–495. doi:10.3758/BF03196183
  • Prime, S. L., Tsotsos, L., Keith, G. P., & Crawford, J. D. (2007). Visual memory capacity in transsaccadic integration. Experimental Brain Research, 180(4), 609–628. doi:10.1007/s00221-007-0885-4
  • Reuter-Lorenz, P. A., Jha, A., & Rosenquist, J. N. (1996). What is inhibited in inhibition of return? Journal of Experimental Psychology: Human Perception and Performance, 22(2), 367–378.
  • Sapir, A., Jackson, K., Butler, J., Paul, M. A., & Abrams, R. A. (2013). Inhibition of return affects contrast sensitivity. The Quarterly Journal of Experimental Psychology, 67(7), 1305–1316. doi:10.1080/17470218.2013.859282
  • Schut, M. J. (2016). P01: Inhibition of return in transsaccadic memory. doi:10.17605/OSF.IO/56BJE
  • Van der Stigchel, S., & De Vries, J. P. (2015). There is no attentional global effect: Attentional shifts are independent of the saccade endpoint. Journal of Vision, 15(15), 1–12. doi:10.1167/15.15.17
  • Van Selst, M., & Jolicoeur, P. (1994). A solution to the effect of sample size on outlier elimination. The Quarterly Journal of Experimental Psychology, 47A(3), 631–650. doi:10.1080/14640749408401131
  • Whitney, D., & Levi, D. M. (2011). Visual crowding: A fundamental limit on conscious perception and object recognition. Trends in Cognitive Sciences, 15(4), 160–168. doi:10.1016/j.tics.2011.02.005.Visual
  • Wolfe, J. M. (1994). Guided search 2.0 a revised model of visual search. Psychonomic Bulletin & Review, 1(2), 202–238. doi: 10.3758/BF03200774
  • Wolfe, J. M., Reinecke, A., & Brawn, P. (2006). Why don’t we see changes? The role of attentional bottlenecks and limited visual memory. Visual Cognition, 14(4–8), 749–780. doi:10.1080/13506280500195292
  • Woodman, G. F., Vogel, E. K., & Luck, S. J. (2012). Flexibility in visual working memory: Accurate change detection in the face of irrelevant variations in position. Visual Cognition, 20, 1–28. doi:10.1080/13506285.2011.630694