1,242
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Neuropsychological evidence for the temporal dynamics of category-specific naming

, , , &
Pages 79-99 | Received 26 Oct 2016, Accepted 25 Apr 2017, Published online: 06 Jun 2017

References

  • Ahissar, M., & Hochstein, S. (2004). The reverse hierarchy theory of visual perceptual learning. Trends in Cognitive Sciences, 8(10), 457–464. doi: 10.1016/j.tics.2004.08.011
  • Allison, P. D. (2010). Survival analysis using SAS: A practical guide. Cary, NC: SAS Institute.
  • Arterberry, M. E. (2001). Making living versus nonliving distinctions: Lessons from infants. Behavioral and Brain Sciences, 24(3), 477.
  • Bar, M. (2003). A cortical mechanism for triggering top-down facilitation in visual object recognition. Journal of Cognitive Neuroscience, 15, 600–609. doi: 10.1162/089892903321662976
  • Barbarotto, R., Capitani, E., & Laiacona, M. (1996). Naming deficits in herpes simplex encephalitis. Acta Neurologica Scandinavica, 93, 272–280. doi: 10.1111/j.1600-0404.1996.tb00520.x
  • Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94, 115–147. doi: 10.1037/0033-295X.94.2.115
  • Blaizot, X., Mansilla, F., Insausti, A. M., Constans, J. M., Salinas-Alamán, A., Pró-Sistiaga, P., … Insausti, R. (2010). The human parahippocampal region: I. Temporal pole cytoarchitectonic and MRI correlation. Cerebral Cortex, 20, 2198–2212. doi: 10.1093/cercor/bhp289
  • Blundo, C., Ricci, M., & Miller, L. (2006). Category-specific knowledge deficit for animals in a patient with herpes simplex encephalitis. Cognitive Neuropsychology, 23(8), 1248–1268. doi: 10.1080/02643290600896449
  • Burnett, H. G., Panis, S., Wagemans, J., & Jellema, T. (2015). Impaired identification of impoverished animate but not inanimate objects in adults with high-functioning autism spectrum disorder. Autism Research, 8(1), 52–60. doi: 10.1002/aur.1412
  • Caramazza, A. (1998). The interpretation of semantic category-specific deficits: What do they reveal about the organization of conceptual knowledge in the brain? Neurocase, 4, 265–272. doi:10.1093/neucas/4.4.265
  • Caramazza, A., Hillis, A. E., Rapp, B., & Romani, C. (1990). The multiple semantics hypothesis: Multiple confusion? Cognitive Neuropsychology, 7, 161–189. doi: 10.1080/02643299008253441
  • Caramazza, A., & Shelton, J. R. (1998). Domain-specific knowledge systems in the brain: The animate inanimate distinction. Journal of Cognitive Neuroscience, 10, 1–34. doi: 10.1162/089892998563752
  • De Winter, J., & Wagemans, J. (2004). Contour-based object identification and segmentation: Stimuli, norms and data, and software tools. Behaviour Research Methods, Instruments, and Computers, 36, 604–624. doi: 10.3758/BF03206541
  • De Winter, J., & Wagemans, J. (2008). Perceptual saliency of points along the contour of everyday objects: A large-scale study. Perception & Psychophysics, 70, 50–64. doi: 10.3758/PP.70.1.50
  • Devlin, J. T., Moore, C. J., Mummery, C. J., Gorno-Tempini, M. L., Phillips, J. A., Noppeney, U., … Price, C. J. (2002). Anatomic constraints on cognitive theories of category specificity. NeuroImage, 15, 675–685. doi: 10.1006/nimg.2001.1002
  • Devlin, J. T., Russell, R. P., Davis, M. H., Price, C. J., Moss, H. E., Fadili, M. J., & Tyler, L. K. (2002). Is there an anatomical basis for category-specificity? Semantic memory studies in PET and fMRI. Neuropsychologia, 40, 54–75. doi: 10.1016/S0028-3932(01)00066-5
  • Donderi, D. C. (2006). Visual complexity: A review. Psychological Bulletin, 132, 73–97. doi: 10.1037/0033-2909.132.1.73
  • Eger, E., Henson, R. N., Driver, J., & Dolan, R. J. (2007). Mechanisms of top-down facilitation in perception of visual objects studied by fMRI. Cerebral Cortex, 17(9), 2123–2133. doi: 10.1093/cercor/bhl119
  • Forde, E. M. E., & Humphreys, G. W. (1999). Category-specific recognition impairments: A review of important case studies and influential theories. Aphasiology, 13(3), 169–193. doi: 10.1080/026870399402172
  • Gainotti, G. (2000). What the locus of brain lesion tells us about the nature of the cognitive defect underlying category-specific disorders: A review. Cortex, 36, 539–559. doi: 10.1016/S0010-9452(08)70537-9
  • Gainotti, G., Silveri, M. C., Daniele, A., & Giustolisi, L. (1995). Neuroanatomical correlates of category-specific semantic disorders: A critical review. Memory, 3, 247–264. doi: 10.1080/09658219508253153
  • Gerlach, C. (2009). Category-specificity in visual object recognition. Cognition, 111(3), 281–301. doi: 10.1016/j.cognition.2009.02.005
  • Gerlach, C., Aaside, C. T., Humphreys, G. W., Gade, A., Paulson, O. B., & Law, I. (2002). Brain activity related to integrative processes in visual object recognition: Bottom-up integration and the modulatory influence of stored knowledge. Neuropsychologia, 40, 1254–1267. doi: 10.1016/S0028-3932(01)00222-6
  • Gerlach, C., Law, I., & Paulson, O. B. (2004). Structural similarity and category-specificity: A refined account. Neuropsychologia, 42, 1543–1553. doi: 10.1016/j.neuropsychologia.2004.03.004
  • Gerlach, C., Law, I., & Paulson, O. B. (2006). Shape configuration and category-specificity. Neuropsychologia, 44, 1247–1260. doi: 10.1016/j.neuropsychologia.2005.09.010
  • Gerlach, C., & Marques, J. F. (2014). Visual complexity exerts opposing effects on object categorization and identification. Visual Cognition, 22(6), 751–769. doi: 10.1080/13506285.2014.915908
  • Gillebert, C. R., Op de Beeck, H., Panis, S., & Wagemans, J. (2009). Subordinate categorization enhances the neural selectivity in human object-selective cortex for fine shape differences. Journal of Cognitive Neuroscience, 21(6), 1054–1064. doi: 10.1162/jocn.2009.21089
  • Graboi, D., & Lisman, J. (2003). Recognition by top-down and bottom-up processing in cortex: The control of selective attention. Journal of Neurophysiology, 90, 798–810. doi: 10.1152/jn.00777.2002
  • Grill-Spector, K., & Kanwisher, N. (2005). Visual recognition: As soon as you know it is there, you know what it is. Psychological Science, 16, 152–160. doi: 10.1111/j.0956-7976.2005.00796.x
  • Humphreys, G. W., Bickerton, W.-L., Samson, D., & Riddoch, M. J. (2012). The Birmingham cognitive screen (BCoS). London: Psychology Press.
  • Humphreys, G. W., & Forde, E. M. E. (2001). Hierarchies, similarity, and interactivity in object recognition: “category-specific” neuropsychological deficits. The Behavioural and Brain Sciences, 24, 453–509.
  • Humphreys, G. W., & Riddoch, M. J. (2003). A case series analysis of “category-specific” deficits of living things: The HIT account. Cognitive Neuropsychology, 20, 263–306. doi: 10.1080/02643290342000023
  • Humphreys, G. W., Riddoch, M. J., & Quinlan, P. T. (1988). Cascade processes in picture identification. Cognitive Neuropsychology, 5, 67–104. doi: 10.1080/02643298808252927
  • Lambon Ralph, M. A., Lowe, C., & Rogers, T. T. (2007). Neural basis of category-specific semantic deficits for living things: Evidence from semantic dementia, HSVE and a neural network model. Brain, 130, 1127–1137. doi: 10.1093/brain/awm025
  • Lee, T. S., & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. Journal of the Optical Society of America A, 20(7), 1434–1448. doi: 10.1364/JOSAA.20.001434
  • Lloyd-Jones, T. J., & Luckhurst, L. (2002). Outline shape is a mediator of object recognition that is particularly important for living things. Memory & Cognition, 30, 489–498. doi: 10.3758/BF03194950
  • O’Reilly, R. C., Wyatte, D., Herd, S., Mingus, B., & Jilk, D. J. (2013). Recurrent processing during object recognition. Frontiers in Psychology, 4, 1–14. Article 124.
  • Panis, S., De Winter, J., Vandekerckhove, J., & Wagemans, J. (2008). Identification of everyday objects on the basis of fragmented outline versions. Perception, 37, 271–289. doi: 10.1068/p5516
  • Panis, S., & Hermens, F. (2014). Time course of spatial contextual interference: Event history analyses of simultaneous masking by nonoverlapping patterns. Journal of Experimental Psychology: Human Perception & Performance, 40, 129–144.
  • Panis, S., & Schmidt, T. (2016). What is shaping RT and accuracy distributions? Active and selective response inhibition causes the negative compatibility effect. Journal of Cognitive Neuroscience, 28(11), 1651–1671. doi: 10.1162/jocn_a_00998
  • Panis, S., Vangeneugden, J., Op de Beeck, H. P., & Wagemans, J. (2008). The representation of subordinate shape similarity in human occipitotemporal cortex. Journal of Vision, 8(10), 9, 1–15. doi: 10.1167/8.10.9
  • Panis, S., Vangeneugden, J., & Wagemans, J. (2008). Similarity, typicality, and category-level matching of morphed outlines of everyday objects. Perception, 37, 1822–1849. doi: 10.1068/p5934
  • Panis, S., & Wagemans, J. (2009). Time-course contingencies in perceptual organization and object identification of fragmented object outlines. Journal of Experimental Psychology: Human Perception and Performance, 35(3), 661–687. doi: 10.1037/a0013547
  • Riddoch, M. J., & Humphreys, G. W. (2004). Object identification in simultanagnosia: When wholes are not the sum of their parts. Cognitive Neuropsychology, 21, 423–441. doi: 10.1080/02643290342000564
  • Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382–439. doi: 10.1016/0010-0285(76)90013-X
  • Sartori, G., & Job, R. (1988). The oyster with four legs: A neuropsychological study on the interaction of visual and semantic information. Cognitive Neuropsychology, 5, 105–132. doi: 10.1080/02643298808252928
  • Sartori, G., Job, R., Miozzo, M., Zago, S., & Marchiori, G. (1993). Category-specific form knowledge deficit in a patient with herpes simplex encephalitis. Journal of Clinical and Experimental Neuropsychology, 15, 280–299. doi: 10.1080/01688639308402563
  • Schacter, D. L., & Buckner, R. L. (1998). Priming and the brain. Neuron, 20, 185–195. doi: 10.1016/S0896-6273(00)80448-1
  • Schöner, G., Spencer, J., & the DFT research group. (2016). Dynamic thinking: A primer on dynamic field theory. New York: Oxford University Press.
  • Singer, J. D., & Willett, J. B. (1993). It’s about time: Using discrete-time survival analysis to study duration and the timing of events. Journal of Educational Statistics, 18, 155–195. doi:10.3102/10769986018002155
  • Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and event occurrence. New York: Oxford University Press.
  • Singh, M., & Fulvio, J. M. (2005). Visual extrapolation of contour geometry. Proceedings of the National Academy of Sciences of the U.S.A., 102, 939–944. doi: 10.1073/pnas.0408444102
  • Snodgrass, J. G., & Corwin, J. (1988). Perceptual identification thresholds for 150 fragmented pictures from the snodgrass and vanderwart picture set. Perceptual and Motor Skills, 67, 3–36. doi: 10.2466/pms.1988.67.1.3
  • Snodgrass, J. G., & Vanderwart, M. (1980). A standardized set of 260 pictures: Norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Human Learning and Memory, 6, 174–215. doi: 10.1037/0278-7393.6.2.174
  • Tanaka, J. W. (2001). The entry point of face recognition: Evidence for face expertise. Journal of Experimental Psychology: General, 130(3), 534–543. doi: 10.1037/0096-3445.130.3.534
  • Torfs, K., Panis, S., & Wagemans, J. (2010). Identification of fragmented object outlines: A dynamic interplay between different component processes. Visual Cognition, 18, 1133–1164. doi: 10.1080/13506281003693593
  • Tsapkini, K., Frangakis, C. E., & Hillis, A. E. (2011). The function of the left anterior temporal pole: Evidence from acute stroke and infarct volume. Brain, 134, 3094–3105. https://doi.org/10.1093/brain/awr050
  • Tulving, E., & Schacter, D. L. (1990). Priming and human memory systems. Science, 247(4940), 301–306. doi: 10.1126/science.2296719
  • Tyler, L. K., & Moss, H. E. (2001). Towards a distributed account of conceptual knowledge. Trends in Cognitive Sciences, 5, 244–252. doi: 10.1016/S1364-6613(00)01651-X
  • Ullman, S. (2007). Object recognition and segmentation by a fragment-based hierarchy. Trends in Cognitive Sciences, 11, 58–64. doi: 10.1016/j.tics.2006.11.009
  • van Turennout, M., Bielamowicz, L., & Martin, A. (2003). Modulation of neural activity during object naming: Effects of time and practice. Cerebral Cortex, 13, 381–391. doi: 10.1093/cercor/13.4.381
  • Wagemans, J., De Winter, J., Op de Beeck, H., Ploeger, A., Beckers, T., & Vanroose, P. (2008). Identification of everyday objects on the basis of silhouette and outline versions. Perception, 37, 207–244. doi: 10.1068/p5825
  • Wagemans, J., Notebaert, W., & Boucart, M. (1998). Lorazepam but not diazepam impairs identification of pictures on the basis of specific contour fragments. Psychopharmacology, 138, 326–333. doi: 10.1007/s002130050678
  • Warrington, E. K., & McCarthy, R. A. (1987). Categories of knowledge. Further fractionation and an attempted integration. Brain, 110, 1273–1296. doi: 10.1093/brain/110.5.1273
  • Warrington, E. K., & Shallice, T. (1984). Category specific semantic impairments. Brain, 107, 829–853. doi: 10.1093/brain/107.3.829