303
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

You’re looking for what? Comparing search for familiar, nameable objects to search for unfamiliar, novel objects

, , &
Pages 8-20 | Received 28 Jan 2018, Accepted 28 Jan 2019, Published online: 14 Mar 2019

References

  • Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106–111.
  • Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18(7), 622–628.
  • Bower, G. H., Karlin, M. B., & Dueck, A. (1975). Comprehension and memory for pictures. Memory & Cognition, 3(2), 216–220.
  • Brady, T. F., Konkle, T., & Alvarez, G. A. (2011). A review of visual memory capacity: Beyond individual items and toward structured representations. Journal of Vision, 11(5), 4–4.
  • Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2008). Visual long-term memory has a massive storage capacity for object details. Proceedings of the National Academy of Sciences, 105(38), 14325–14329.
  • Brady, T. F., Störmer, V. S., & Alvarez, G. A. (2016). Working memory is not fixed-capacity: More active storage capacity for real-world objects than for simple stimuli. Proceedings of the National Academy of Sciences, 113(27), 7459–7464.
  • Castelhano, M. S., Pollatsek, A., & Cave, K. R. (2008). Typicality aids search for an unspecified target, but only in identification and not in attentional guidance. Psychonomic Bulletin & Review, 15(4), 795–801.
  • Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychological Bulletin, 104(2), 163–191.
  • Cowan, N. (1995). Attention and memory: An integrated framework. New York: Oxford University Press.
  • Cowan, N. (1999). An embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Models of workingmemory: Mechanisms of active maintenance and executive control (pp. 62–101). Cambridge: Cambridge University Press.
  • Cowan, N. (2001). The magical number four in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114.
  • Cunningham, C. A., & Wolfe, J. M. (2014). The role of object categories in hybrid visual and memory search. Journal of Experimental Psychology: General, 143(4), 1585–1599.
  • Desimone, R. (1996). Neural mechanisms for human visual memory and their role in attention. Proceedings of the National Academy of Sciences, USA, 93, 13494–13499.
  • Dolan, R. J., & Fletcher, P. C. (1997). Dissociating prefrontal and hippocampal function in episodic memory encoding. Nature, 388(6642), 582–585.
  • Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433–458.
  • Eng, H. Y., Chen, D., & Jiang, Y. (2005). Visual working memory for simple and complex visual stimuli. Psychonomic Bulletin & Review, 12(6), 1127–1133.
  • Godwin, H., Hout, M. C., & Menneer, T. (2014). Visual similarity is stronger than semantic similarity in guiding visual search for numbers. Psychonomic Bulletin & Review, 21, 689–695.
  • Godwin, H. J., Walenchok, S. C., Houpt, J. W., Hout, M. C., & Goldinger, S. D. (2015). Faster than the speed of rejection: Object identification processes during visual search for multiple targets. Journal of Experimental Psychology: Human Perception and Performance, 41(4), 1007–1020.
  • Han, S. H., & Kim, M. S. (2004). Visual search does not remain efficient when executive working memory is working. Psychological Science, 15(9), 623–628.
  • Horst, J. S., & Hout, M. C. (2016). The novel object and unusual name (NOUN) database: A collection of novel images for use in experimental research. Behavior Research Methods, 48, 1393–1409.
  • Hout, M. C., & Goldinger, S. D. (2010). Learning in repeated visual search. Attention, Perception, & Psychophysics, 72, 1267–1282.
  • Hout, M. C., & Goldinger, S. D. (2012). Incidental learning speeds visual search by lowering response thresholds, not by improving efficiency: Evidence from eye movements. Journal of Experimental Psychology: Human Perception and Performance, 38, 90–112.
  • Hout, M. C., & Goldinger, S. D. (2015). Target templates: The precision of mental representations affects attentional guidance and decision-making in visual search. Attention, Perception, & Psychophysics, 77(1), 128–149.
  • Hout, M. C., Goldinger, S. D., & Brady, K. J. (2014). MM-MDS: A multidimensional scaling database with similarity ratings for 240 object categories from the massive memory picture database. PloS one, 9(11), e112644.
  • Hout, M. C., Robbins, A., Godwin, H. J., Fitzsimmons, G., & Scarince, C. (2017). Categorical templates are more useful when features are consistent: Evidence from eye movements during search for societally important vehicles. Attention, Perception, & Psychophysics, 79, 1578–1592.
  • Hout, M. C., Walenchok, S. C., Goldinger, S. D., & Wolfe, J. M. (2015). Failures of perception in the low-prevalence effect: Evidence from active and passive visual search. Journal of Experimental Psychology: Human Perception & Performance, 41, 977–994. doi: 10.1037/xhp0000053
  • Huettig, F., & Altmann, G. T. (2005). Word meaning and the control of eye fixation: Semantic competitor effects and the visual world paradigm. Cognition, 96(1), B23–B32.
  • Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010a). Conceptual distinctiveness supports detailed visual long-term memory for real-world objects. Journal of Experimental Psychology: General, 139(3), 558–578.
  • Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010b). Scene memory is more detailed than you think: The role of categories in visual long-term memory. Psychological Science, 21, 1551–1556.
  • Koutstaal, W., Reddy, C., Jackson, E. M., Prince, S., Cendan, D. L., & Schacter, D. L. (2003). False recognition of abstract versus common objects in older and younger adults: Testing the semantic categorization account. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(4), 499–510.
  • Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281.
  • Malcolm, G. L., & Henderson, J. M. (2009). The effects of target template specificity on visual search in real-world scenes: Evidence from eye movements. Journal of Vision, 9(11), 8–8.
  • Menneer, T., Barrett, D. J. K., Phillips, L., Donnelly, N., & Cave, K. R. (2004). Search efficiency for multiple targets. Cognitive Technology, 9, 22–25.
  • Menneer, T., Cave, K. R., & Donnelly, N. (2009). The cost of search for multiple targets: Effects of practice and target similarity. Journal of Experimental Psychology: Applied, 15, 125–139.
  • Moores, E., Laiti, L., & Chelazzi, L. (2003). Associative knowledge controls deployment of visual selective attention. Nature Neuroscience, 6(2), 182–189.
  • Oberauer, K., & Hein, L. (2012). Attention to information in working memory. Current Directions in Psychological Science, 21(3), 164–169.
  • Olivers, C. N., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Sciences, 15(7), 327–334.
  • Psychology Software Tools. (2012). E-Prime 2.0 [Computer software]. Retrieved from http://www.pstnet.com
  • Ruchkin, D. S., Grafman, J., Cameron, K., & Berndt, R. S. (2003). Working memory retention systems: A state of activated long-term memory. Behavioral and Brain Sciences, 26(6), 709–728.
  • Scarince, C., & Hout, M. C. (2018; Online first). Cutting through the MADness: Expectations about what a target is doing impacts how likely it is to be found in dynamic visual displays. The Quarterly Journal of Experimental Psychology. doi: 10.1177/1747021817741408
  • Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84, 1–66.
  • Simons, J. S., Graham, K. S., Owen, A. M., Patterson, K., & Hodges, J. R. (2001). Perceptual and semantic components of memory for objects and faces: A PET study. Journal of Cognitive Neuroscience, 13(4), 430–443.
  • Smilek, D., Enns, J. T., Eastwood, J. D., & Merikle, P. M. (2006). Relax! Cognitive strategy influences visual search. Visual Cognition, 14(4-8), 543–564.
  • Townsend, J. T., & Ashby, F. G. (1983). Stochastic modeling of elementary psychological processes. Cambridge: Cambridge University Press.
  • Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.
  • Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 92–114.
  • Wagner, A. D., Schacter, D. L., Rotte, M., Koutstaal, W., Maril, A., Dale, A. M., … Buckner, R. L. (1998). Building memories: Remembering and forgetting of verbal experiences as predicted by brain activity. Science, 281(5380), 1188–1191.
  • Walenchok, S. C., Hout, M. C., & Goldinger, S. D. (2016). Implicit object naming in visual search: Evidence from phonological competition. Journal of Experimental Psychology: Attention, Perception, & Psychophysics, 78(8), 2633–2654.
  • Wiseman, S., & Neisser, U. (1974). Perceptual organization as a determinant of visual recognition memory. The American Journal of Psychology, 87, 675–681.
  • Wolfe, J. M. (1998). What can 1 million trials tell us about visual search? Psychological Science, 9(1), 33–39.
  • Wolfe, J. M. (2012). Saved by a log: How do humans perform hybrid visual and memory search? Psychological Science, 23(7), 698–703.
  • Wolfe, J. M., Horowitz, T. S., Kenner, N., Hyle, M., & Vasan, N. (2004). How fast can you change your mind? The speed of top-down guidance in visual search. Vision Research, 44(12), 1411–1426.
  • Woodman, G. F., Carlisle, N. B., & Reinhart, R. M. (2013). Where do we store the memory representations that guide attention? Journal of Vision, 13(3), 1–1.
  • Woodman, G. F., Luck, S. J., & Schall, J. D. (2007). The role of working memory representations in the control of attention Cerebral Cortex, 17(suppl_1), i118–i124.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.