304
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Biological motion is stored independently from bound representation in working memory

, , , &
Pages 701-713 | Received 09 Sep 2018, Accepted 26 Jun 2019, Published online: 12 Jul 2019

References

  • Atkinson, A. P., Dittrich, W. H., Gemmell, A. J., & Young, A. W. (2004). Emotion perception from dynamic and static body expressions in point-light and full-light displays. Perception, 33(6), 717–746.
  • Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417–423.
  • Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839.
  • Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 1–29. doi: 10.1146/annurev-psych-120710-100422
  • Baddeley, A., Allen, R. J., & Hitch, G. J. (2011). Binding in visual working memory: The role of the episodic buffer. Neuropsychologia, 49(6), 1393–1400. doi: 10.1016/j.neuropsychologia.2010.12.042
  • Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning andmotivation: Advances in research and theory (Vol. 8, pp. 47–89). New York: Academic Press.
  • Blake, R., & Shiffrar, M. (2007). Perception of human motion. Annual Review of Psychology, 58, 47–73. doi: 10.1146/annurev.psych.57.102904.190152
  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436.
  • Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1996). Object and spatial visual working memory activate separate neural systems in human cortex. Cerebral Cortex, 6(1), 39–49.
  • Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1(1), 42–45.
  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114.
  • Ding, X., Gao, Z., & Shen, M. (2017). Two equals one: Two human actions during social interaction are grouped as one unit in working memory. Psychological Science, 28(9), 1311–1320. doi: 10.1177/0956797617707318
  • Ding, X., Zhao, Y., Wu, F., Lu, X., Gao, Z., & Shen, M. (2015). Binding biological motion and visual features in working memory. Journal of Experimental Psychology: Human Perception and Performance, 41(3), 850–865. doi: 10.1037/xhp0000061
  • Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.
  • Fougnie, D., & Alvarez, G. A. (2011). Object features fail independently in visual working memory: Evidence for a probabilistic feature-store model. Journal of Vision, 11(12), 3–3. doi: 10.1167/11.12.3
  • Gao, Z., Bentin, S., & Shen, M. (2015). Rehearsing biological motion in working memory: An EEG study. Journal of Cognitive Neuroscience, 27(1), 198–209. doi: 10.1162/jocn_a_00687
  • Gao, Z., Fan, W., Qiu, F., He, K., Yang, Y., & Shen, M. (2017). Bindings in working memory: The role of object-based attention. Attention Perception & Psychophysics, 79(2), 533–552.
  • Gao, Z., Ye,T., Shen, M., & Perry, A. (2016). Working memory capacity of biological movements predicts empathy traits. Psychonomic Bulletin & Review, 23(2), 468–475.
  • Giese, M. A., & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 4(3), 179–192. doi: 10.1038/nrn1057
  • Gilaie-Dotan, S., Bentin, S., Harel, M., Rees, G., & Saygin, A. P. (2011). Normal form from biological motion despite impaired ventral stream function. Neuropsychologia, 49(5), 1033–1043. doi: 10.1016/j.neuropsychologia.2011.01.009
  • Gilaie-Dotan, S., Kanai, R., Bahrami, B., Rees, G., & Saygin, A. P. (2013). Neuroanatomical correlates of biological motion detection. Neuropsychologia, 51(3), 457–463. doi: 10.1016/j.neuropsychologia.2012.11.027
  • He, J., Guo, D., Zhai, S., Shen, M., & Gao, Z. (in press). Development of social working memory in preschoolers and its relation to theory of mind. Child Development.
  • Joachim, L., & Markus, L. (2008). The role of spatial and temporal information in biological motion perception. Advances in Cognitive Psychology, 3(4), 419–428.
  • Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14(2), 201–211. doi: 10.3758/Bf03212378
  • Lange, J., & Lappe, M. (2006). A model of biological motion perception from configural form cues. Journal of Neuroscience, 26(11), 2894–2906. doi: 10.1523/JNEUROSCI.4915-05.2006
  • Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from their movement. Journal of Experimental Psychology: Human Perception and Performance, 31(1), 210–220. doi: 10.1037/0096-1523.31.1.210
  • Lu, X., Huang, J., Yi, Y., Shen, M., Weng, X., & Gao, Z. (2016). Holding biological motion in working memory: An fMRI study. Frontiers in Human Neuroscience, 10, 251–263.
  • Lu, X., Ma, X., Zhao, Y., Gao, Z., & Shen, M. (in press). Retaining event files in working memory requires extra object-based attention than the constituent elements. Quarterly Journal of Experimental Psychology.
  • Oberman, L. M., Pineda, J. A., & Ramachandran, V. S. (2007). The human mirror neuron system: A link between action observation and social skills. Social Cognitive and Affective Neuroscience, 2(1), 62–66. doi: 10.1093/scan/nsl022
  • Oberman, L. M., & Ramachandran, V. S. (2007). The simulating social mind: The role of the mirror neuron system and simulation in the social and communicative deficits of autism spectrum disorders. Psychological Bulletin, 133(2), 310–327. doi: 10.1037/0033-2909.133.2.310
  • Orgs, G., & Haggard, P. (2011). Temporal binding during apparent movement of the human body. Visual Cognition, 19(7), 833–845. doi: 10.1080/13506285.2011.598481
  • Perry, A., Troje, N. F., & Bentin, S. (2010). Exploring motor system contributions to the perception of social information: Evidence from EEG activity in the mu/alpha frequency range. Social Neuroscience, 5(3), 272–284. doi: 10.1080/17470910903395767
  • Petrini, K., Piwek, L., Crabbe, F., Pollick, F. E., & Garrod, S. (2014). Look at those two!: The precuneus role in unattended third-person perspective of social interactions. Human Brain Mapping, 35(10), 5190–5203. doi: 10.1002/hbm.22543
  • Pollick, F. E., Lestou, V., Ryu, J., & Cho, S. B. (2002). Estimating the efficiency of recognizing gender and affect from biological motion. Vision Research, 42(20), 2345–2355.
  • Puce, A., & Perrett, D. (2003). Electrophysiology and brain imaging of biological motion. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358(1431), 435–445.
  • Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192. doi: 10.1146/annurev.neuro.27.070203.144230
  • Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661–670. doi: 10.1038/35090060
  • Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic Bulletin & Review, 18(2), 324–330.
  • Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default bayes factors for anova designs. Journal of Mathematical Psychology, 56(5), 356–374.
  • Saygin, A. P. (2007). Superior temporal and premotor brain areas necessary for biological motion perception. Brain, 130(Pt 9), 2452–2461. doi: 10.1093/brain/awm162
  • Schneegans, S., & Bays, P. M. (2017). Neural architecture for feature binding in visual working memory. The Journal of Neuroscience, 37(14), 3913–3925. doi: 10.1523/JNEUROSCI.3493-16.2017
  • Schneegans, S., & Bays, P. M. (2019). New perspectives on binding in visual working memory. British Journal of Psychology, 110(2), 207–244. doi: 10.1111/bjop.12345
  • Shen, M., Gao, Z., Ding, X., Zhou, B., & Huang, X. (2014). Holding biological motion information in working memory. Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1332–1345. doi: 10.1037/a0036839
  • Shen, M., Huang, X., & Gao, Z. (2015). Object-based attention underlies the rehearsal of feature binding in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 41(2), 479–493. doi: 10.1037/xhp0000018
  • Smyth, M. M., Pearson, N. A., & Pendleton, L. R. (1988). Movement and working memory: Patterns and positions in space. The Quarterly Journal of Experimental Psychology Section A, 40(3), 497–514.
  • Smyth, M. M., & Pendleton, L. R. (1989). Working memory for movements. Quarterly Journal of Experimental Psychology A Human Experimental Psychology, 41(2), 235–250.
  • Smyth, M. M., & Pendleton, L. R. (1990). Space and movement in working memory. The Quarterly Journal of Experimental Psychology Section A, 42(2), 291–304.
  • Thompson, J., & Parasuraman, R. (2012). Attention, biological motion, and action recognition. NeuroImage, 59, 4–13. doi: 10.1016/j.neuroimage.2011.05.044
  • Thornton, I. M., Rensink, R. A., & Shiffrar, M. (2002). Active versus passive processing of biological motion. Perception, 31(7), 837–853.
  • Troje, N. F. (2014). What is biological motion? Definition, stimuli, and paradigms. In M. D. Rutherford, & V. A. Kuhlmeier (Eds.), Social perception: Detection and interpretation of animacy, agency, and intention (pp. 13–36). Cambridge, MA: MIT Press.
  • Urgolites, Z. J., & Wood, J. N. (2013). Visual long-term memory stores high-fidelity representations of observed actions. Psychological Science, 24(4), 403–411. doi: 10.1177/0956797612457375
  • Vanrie, J., & Verfaillie, K. (2004). Perception of biological motion: A stimulus set of human point-light actions. Behavior Research Methods, Instruments, & Computers, 36(4), 625–629.
  • Vicary, S. A., Robbins, R. A., Calvo-Merino, B., & Stevens, C. J. (2014). Recognition of dance-like actions: Memory for static posture or dynamic movement? Memory & Cognition, 42(5), 755–767. doi: 10.3758/s13421-014-0395-0
  • Vicary, S. A., & Stevens, C. J. (2014). Posture-based processing in visual short-term memory for actions. Quarterly Journal of Experimental Psychology, 67(12), 2409–2424. doi: 10.1080/17470218.2014.931445
  • Wang, B., Cao, X., Theeuwes, J., Olivers, C. N., & Wang, Z. (2016). Location-based effects underlie feature conjunction benefits in visual working memory. Journal of Vision, 16(11), 12. doi: 10.1167/16.11.12
  • Wang, B., Cao, X., Theeuwes, J., Olivers, C. N., & Wang, Z. (2017). Separate capacities for storing different features in visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(2), 226–236. doi: 10.1037/xlm0000295
  • Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131(1), 48–64.
  • Wood, J. N. (2007). Visual working memory for observed actions. Journal of Experimental Psychology: General, 136(4), 639–652. doi: 10.1037/0096-3445.136.4.639
  • Wood, J. N. (2008). Visual memory for agents and their actions. Cognition, 108(2), 522–532. doi: 10.1016/j.cognition.2008.02.012
  • Wood, J. N. (2010). Visual working memory retains movement information within an allocentric reference frame. Visual Cognition, 18(10), 1464–1485. doi: 10.1080/13506285.2010.502430
  • Wood, J. N. (2011). A core knowledge architecture of visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 37(2), 357–381.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.