518
Views
18
CrossRef citations to date
0
Altmetric
Forthcoming Special Issue on: Visual Search and Selective Attention

Probability cueing of singleton-distractor regions in visual search: the locus of spatial distractor suppression is determined by colour swapping

ORCID Icon, , , &
Pages 576-594 | Received 29 Mar 2019, Accepted 08 Sep 2019, Published online: 19 Sep 2019

References

  • Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55(5), 485–496. doi: 10.3758/BF03205306
  • Barras, C., & Kerzel, D. (2017). Target-nontarget similarity decreases search efficiency and increases stimulus-driven control in visual search. Attention, Perception, & Psychophysics, 79(7), 2037–2043. doi: 10.3758/s13414-017-1367-9
  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436. doi: 10.1163/156856897X00357
  • Bravo, M. J., & Nakayama, K. (1992). The role of attention in different visual-search tasks. Perception & Psychophysics, 51(5), 465–472. doi: 10.3758/BF03211642
  • Burra, N., & Kerzel, D. (2013). Attentional capture during visual search is attenuated by target predictability: Evidence from the N2pc, Pd, and topographic segmentation. Psychophysiology, 50(5), 422–430. doi: 10.1111/psyp.12019
  • Druker, M., & Anderson, B. (2010). Spatial probability AIDS visual stimulus discrimination. Frontiers in Human Neuroscience, 4, 63. doi: 10.3389/fnhum.2010.00063
  • D’Zmura, M. (1991). Color in visual search. Vision Research, 31(6), 951–966. doi: 10.1016/0042-6989(91)90203-H
  • Failing, M., Feldmann-Wüstefeld, T., Wang, B., Olivers, C., & Theeuwes, J. (2019). Statistical regularities induce spatial as well as feature-specific suppression. Journal of Experimental Psychology: Human Perception and Performance, in press. doi: 10.1037/xhp0000660
  • Failing, M., Wang, B., & Theeuwes, J. (2019). Spatial suppression due to statistical regularities is driven by distractor suppression not by target activation. Attention, Perception, & Psychophysics, 81(5), 1405–1414. doi: 10.3758/s13414-019-01704-9
  • Fecteau, J. H., & Munoz, D. P. (2006). Salience, relevance, and firing: A priority map for target selection. Trends in Cognitive Sciences, 10(8), 382–390. doi: 10.1016/j.tics.2006.06.011
  • Ferrante, O., Patacca, A., Di Caro, V., Della Libera, C., Santandrea, E., & Chelazzi, L. (2018). Altering spatial priority maps via statistical learning of target selection and distractor filtering. Cortex, 102, 67–95. doi: 10.1016/j.cortex.2017.09.027
  • Found, A., & Müller, H. J. (1996). Searching for unknown feature targets on more than one dimension: Investigating a “dimension-weighting” account. Perception & Psychophysics, 58(1), 88–101. doi: 10.3758/BF03205479
  • Gaspelin, N., & Luck, S. J. (2018a). Distinguishing among potential mechanisms of singleton suppression. Journal of Experimental Psychology: Human Perception and Performance, 44(4), 626–644. doi: 10.1037/xhp0000484
  • Gaspelin, N., & Luck, S. J. (2018b). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22(1), 79–92. doi: 10.1016/j.tics.2017.11.001
  • Geng, J. J., & Behrmann, M. (2002). Probability cuing of target location facilitates visual search implicitly in normal participants and patients with hemispatial neglect. Psychological Science, 13(6), 520–525. doi: 10.1111/1467-9280.00491
  • Geng, J. J., & Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception & Psychophysics, 67(7), 1252–1268. doi: 10.3758/BF03193557
  • Geng, J. J., DiQuattro, N. E., & Helm, J. (2017). Distractor probability changes the shape of the attentional template. Journal of Experimental Psychology: Human Perception and Performance, 43(12), 1993–2007. doi: 10.1037/xhp0000430
  • Goschy, H., Bakos, S., Müller, H. J., & Zehetleitner, M. (2014). Probability cueing of distractor locations: Both intertrial facilitation and statistical learning mediate interference reduction. Frontiers in Psychology, 5, 1195. doi: 10.3389/fpsyg.2014.01195
  • Graves, T., & Egeth, H. E. (2015). When does feature search fail to protect against attentional capture? Visual Cognition, 23(9-10), 1098–1123. doi: 10.1080/13506285.2016.1145159
  • Jiang, Y. V., Swallow, K. M., & Rosenbaum, G. M. (2013). Guidance of spatial attention by incidental learning and endogenous cueing. Journal of Experimental Psychology: Human Perception and Performance, 39(1), 285–297. doi: 10.1037/a0028022
  • Kerzel, D., & Barras, C. (2016). Distractor rejection in visual search breaks down with more than a single distractor feature. Journal of Experimental Psychology: Human Perception and Performance, 42(5), 648–657. doi: 10.1037/xhp0000180
  • Lamy, D., & Yashar, A. (2008). Intertrial target-feature changes do not lead to more distraction by singletons: Target uncertainty does. Vision Research, 48(10), 1274–1279. doi: 10.1016/j.visres.2008.02.021
  • Leber, A. B., Gwinn, R. E., Hong, Y., & O’Toole, R. J. (2016). Implicitly learned suppression of irrelevant spatial locations. Psychonomic Bulletin & Review, 23(6), 1873–1881. doi: 10.3758/s13423-016-1065-y
  • Liesefeld, H. R., Fu, X., & Zimmer, H. D. (2015). Fast and careless or careful and slow? Apparent holistic processing in mental rotation is explained by speed-accuracy trade-offs. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41, 1140–1151. doi: 10.1037/xlm0000081
  • Liesefeld, H. R., & Janczyk, M. (2019). Combining speed and accuracy to control for speed-accuracy trade-offs(?). Behavior Research Methods, 51, 40–60. doi: 10.3758/s13428-018-1076-x
  • Liesefeld, H. R., Liesefeld, A. M., & Müller, H. J. (2019). Distractor-interference reduction is dimensionally constrained. Visual Cognition. doi: 10.1080/13506285.2018.1561568
  • Liesefeld, H. R., Liesefeld, A. M., Pollmann, S., & Müller, H. J. (2019). Biasing allocations of attention via selective weighting of saliency signals: Behavioral and neuroimaging evidence for the dimension-weighting account. In T. Hodgson (Ed.), Current topics in behavioral neurosciences: Processes of visuo-spatial attention and working memory. Berlin: Springer. doi: 10.1007/7854_2018_75
  • Liesefeld, H. R., Moran, R., Usher, M., Müller, H. J., & Zehetleitner, M. (2016). Search efficiency as a function of target saliency: The transition from inefficient to efficient search and beyond. Journal of Experimental Psychology: Human Perception and Performance, 42(6), 821–836. doi: 10.1037/xhp0000156
  • Liesefeld, H. R., & Müller, H. J. (2019a). Distractor handling via dimension weighting. Current Opinion in Psychology. doi: 10.1016/j.copsyc.2019.03.003
  • Liesefeld, H. R., & Müller, H. J. (2019b). A theoretical attempt to revive the serial/parallel dichotomy. Attention, Perception, & Psychophysics. doi: 10.3758/s13414-019-01819-z
  • Lindsey, D. T., Brown, A. M., Reijnen, E., Rich, A. N., Kuzmova, Y. I., & Wolfe, J. M. (2010). Color channels, not color appearance or color categories, guide visual search for desaturated color targets. Psychological Science, 21(9), 1208–1214. doi: 10.1177/0956797610379861
  • Miller, J. (1988). Components of the location probability effect in visual search tasks. Journal of Experimental Psychology: Human Perception and Performance, 14(3), 453–471. doi: 10.1037/0096-1523.14.3.453
  • Müller, H. J., & Findlay, J. M. (1987). Sensitivity and criterion effects in the spatial cuing of visual attention. Perception & Psychophysics, 42(4), 383–399. doi: 10.3758/BF03203097
  • Müller, H. J., Heller, D., & Ziegler, J. (1995). Visual search for singleton feature targets within and across feature dimensions. Perception & Psychophysics, 57(1), 1–17. doi: 10.3758/BF03211845
  • Müller, H. J., Reimann, B., & Krummenacher, J. (2003). Visual search for singleton feature targets across dimensions: Stimulus- and expectancy-driven effects in dimensional weighting. Journal of Experimental Psychology: Human Perception and Performance, 29(5), 1021–1035. doi: 10.1037/0096-1523.29.5.1021
  • Müller, H. J., Töllner, T., Zehetleitner, M., Geyer, T., Rangelov, D., & Krummenacher, J. (2010). Dimension-based attention modulates feed-forward visual processing. Acta Psychologica, 135(2), 117–122; discussion 133–139. doi: 10.1016/j.actpsy.2010.05.004.
  • Nothdurft, H. (2000). Salience from feature contrast: Additivity across dimensions. Vision Research, 40(10–12), 1183–1201. doi: 10.1016/S0042-6989(00)00031-6
  • Pinto, Y., Olivers, C. N. L., & Theeuwes, J. (2005). Target uncertainty does not lead to more distraction by singletons: Intertrial priming does. Perception & Psychophysics, 67(8), 1354–1361. doi: 10.3758/BF03193640
  • Rangelov, D., Müller, H. J., & Zehetleitner, M. (2013). Visual search for feature singletons: Multiple mechanisms produce sequence effects in visual search. Journal of Vision, 13(3), 22, 1–16. doi: 10.1167/13.3.22
  • Rangelov, D., Müller, H. J., & Zehetleitner, M. (2017). Failure to pop out: Feature singletons do not capture attention under low signal-to-noise ratio conditions. Journal of Experimental Psychology: General, 146(5), 651–671. doi: 10.1037/xge0000284
  • Sauter, M., Liesefeld, H. R., & Müller, H. J. (2019). Learning to suppress salient distractors in the target dimension: Region-based inhibition is persistent and transfers to distractors in a non-target dimension. Journal of Experimental Psychology: Learning, Memory, and Cognition. doi: 10.1037/xlm0000691
  • Sauter, M., Liesefeld, H. R., Zehetleitner, M., & Müller, H. J. (2018). Region-based shielding of visual search from salient distractors: Target detection is impaired with same- but not different-dimension distractors. Attention, Perception & Psychophysics, 80(3), 622–642. doi: 10.3758/s13414-017-1477-4
  • Shaw, M. L., & Shaw, P. (1977). Optimal allocation of cognitive resources to spatial locations. Journal of Experimental Psychology: Human Perception and Performance, 3(2), 201–211. doi: 10.1037/0096-1523.3.2.201
  • Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51(6), 599–606. doi: 10.3758/BF03211656
  • Theeuwes, J. (2004). Top-down search strategies cannot override attentional capture. Psychonomic Bulletin & Review, 11(1), 65–70. doi: 10.3758/BF03206462
  • Walthew, C., & Gilchrist, I. D. (2006). Target location probability effects in visual search: An effect of sequential dependencies. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1294–1301. doi: 10.1037/0096-1523.32.5.1294
  • Wang, B., & Theeuwes, J. (2018a). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 44(1), 13–17. doi: 10.1037/xhp0000472
  • Wang, B., & Theeuwes, J. (2018b). Statistical regularities modulate attentional capture independent of search strategy. Attention, Perception & Psychophysics, 80(7), 1763–1774. doi: 10.3758/s13414-018-1562-3
  • Wolfe, J. M. (2007). Guided search 4.0. In W. D. Gray (Ed.): Integrated models of cognitive systems (pp. 99–119). Oxford, UK: Oxford University Press.
  • Wolfe, J. M., & Gancarz, G. (1997). Guided search 3.0: A model of visual search catches up with Jay Enoch 40 years later. In V. Lakshminarayanan (Ed.), Basic and clinical applications of vision science (pp. 189–192). Dordrecht, Netherlands: Kluwer Academic.
  • Won, B.-Y., Kosoyan, M., & Geng, J. J. (2019). Evidence for second-order singleton suppression based on probabilistic expectations. Journal of Experimental Psychology: Human Perception and Performance, 45(1), 125–138. doi: 10.1037/xhp0000594
  • Woodman, G. F., & Luck, S. J. (2007). Do the contents of visual working memory automatically influence attentional selection during visual search? Journal of Experimental Psychology: Human Perception and Performance, 33(2), 363–377. doi: 10.1037/0096-1523.33.2.363
  • Zehetleitner, M., Goschy, H., & Müller, H. J. (2012). Top-down control of attention: It’s gradual, practice-dependent, and hierarchically organized. Journal of Experimental Psychology: Human Perception and Performance, 38, 941–957. doi: 10.1037/a0027629
  • Zehetleitner, M., Koch, A. I., Goschy, H., & Müller, H. J. (2013). Salience-based selection: Attentional capture by distractors less salient than the target. PloS One, 8(1), e52595. doi: 10.1371/journal.pone.0052595
  • Zhang, B., Allenmark, F., Liesefeld, H. R., Shi, Z., & Müller, H. J. (2019). Probability cueing of singleton-distractor locations in visual search: Priority-map-or dimension-based inhibition? Journal of Experimental Psychology: Human Perception and Performance, 45(9), 1146–1163. doi: 10.1037/xhp0000652

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.