2,299
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Can subliminal spatial words trigger an attention shift? Evidence from event-related-potentials in visual cueingFootnote*

ORCID Icon & ORCID Icon
Pages 10-32 | Received 28 Feb 2019, Accepted 09 Dec 2019, Published online: 19 Dec 2019

References

  • Al-Janabi, S., & Finkbeiner, M. (2012). Effective processing of masked eye gaze requires volitional control. Experimental Brain Research, 216, 433–443. doi: 10.1007/s00221-011-2944-0
  • Ansorge, U., Horstmann, G., & Worschech, F. (2010). Attentional capture by masked colour singletons. Vision Research, 50, 2015–2027. doi: 10.1016/j.visres.2010.07.015
  • Ansorge, U., Khalid, S., & König, P. (2013). Space-valence priming with subliminal and supraliminal words. Frontiers in Psychology, 4, 81. doi: 10.3389/fpsyg.2013.00081
  • Ansorge, U., Khalid, S., & Laback, B. (2016). Unconscious cross-modal priming of auditory sound localization by visual words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42, 925–937. doi: 10.1037/xlm0000217
  • Ansorge, U., Kiss, M., & Eimer, M. (2009). Goal-driven attentional capture by invisible colours: Evidence from event-related potentials. Psychonomic Bulletin & Review, 16, 648–653. doi:10.3758/PBR.16.4.64 doi: 10.3758/PBR.16.4.648
  • Ansorge, U., Kunde, W., & Kiefer, M. (2014). Unconscious vision and executive control: How unconscious processing and conscious action control interact. Consciousness and Cognition, 27, 268–287. doi: 10.1016/j.concog.2014.05.009
  • Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55, 485–496. doi: 10.3758/BF03205306
  • Berger, A. (1999). Peripheral non-informative cues do induce early facilitation of target detection. European Journal of Cognitive Psychology, 11, 119–137. doi: 10.1080/713752304
  • Boy, F., & Sumner, P. (2010). Tight coupling between positive and reversed priming in the masked prime paradigm. Journal of Experimental Psychology: Human Perception and Performance, 36, 892–905. doi: 10.1037/a0017173
  • Brignani, D., Guzzon, D., Marzi, C. A., & Miniussi, C. (2009). Attentional orienting induced by arrows and eye-gaze compared with an endogenous cue. Neuropsychologia, 47, 370–381. doi: 10.1016/j.neuropsychologia.2008.09.011
  • Brysbaert, M., & Stevens, M. (2018). Power analysis and effect size in mixed effects models: A tutorial. Journal of Cognition, 1, 1–20. doi: 10.5334/joc.10
  • Carr, T. H., & Dagenbach, D. (1990). Semantic priming and repetition priming from masked words: Evidence for a center-surround attentional mechanism in perceptual recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 341–350. doi:10.1037/0278-7393.16.2.341.
  • Castel, A. D., Chasteen, A. L., Scialfa, C. T., & Pratt, J. (2003). Adult age differences in the time course of inhibition of return. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 58, 256–259. doi: 10.1093/geronb/58.5.P256
  • Dehaene, S., Changeux, J. P., Naccache, L., Sackur, J., & Sergent, C. (2006). Conscious, preconscious, and subliminal processing: A testable taxonomy. Trends in Cognitive Sciences, 10, 204–211. doi: 10.1016/j.tics.2006.03.007
  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009
  • Doherty, J. R., Rao, A., Mesulam, M. M., & Nobre, A. C. (2005). Synergistic effect of combined temporal and spatial expectations on visual attention. Journal of Neuroscience, 25, 8259–8266. doi: 10.1523/JNEUROSCI.1821-05.2005
  • Eimer, M., Forster, B., Fieger, A., & Harbich, S. (2004). Effects of hand posture on preparatory control processes and sensory modulations in tactile-spatial attention. Clinical Neurophysiology, 115, 596–608. doi: 10.1016/j.clinph.2003.10.015
  • Eimer, M., & Kiss, M. (2008). Involuntary attentional capture is determined by task set: Evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 20, 1423–1433. doi: 10.1162/jocn.2008.20099
  • Eimer, M., & Schlaghecken, F. (1998). Effects of masked stimuli on motor activation: Behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance, 24, 1737–1747. doi: 10.1037/0096-1523.24.6.1737
  • Feng, Q., & Zhang, X. (2014). Eye gaze triggers reflexive attention shifts: Evidence from lateralised ERPs. Brain Research, 1589, 37–44. doi: 10.1016/j.brainres.2014.09.029
  • Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–1044. doi: 10.1037/0096-1523.18.4.1030
  • Gibson, B. S., & Kingstone, A. (2006). Visual attention and the semantics of space beyond central and peripheral cues. Psychological Science, 17, 622–627. doi: 10.1111/j.1467-9280.2006.01754.x
  • Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. Oxford, England: John Wiley.
  • Greenwald, A. G., Draine, S. C., & Abrams, R. L. (1996). Three cognitive markers of unconscious semantic activation. Science, 273, 1699–1702. doi: 10.1126/science.273.5282.1699
  • Gromer, D. (2017). apa: Format Outputs of Statistical Tests According to APA Guidelines. R package version 0.2.0. https://CRAN.R-project.org/package=apa
  • Harter, M. R., Miller, S. L., Price, N. J., LaLonde, M. E., & Keyes, A. L. (1989). Neural processes involved in directing attention. Journal of Cognitive Neuroscience, 1, 223–237. doi: 10.1162/jocn.1989.1.3.223
  • Hassin, R. R. (2013). Yes it can: On the functional abilities of the human unconscious. Perspectives on Psychological Science, 8, 195–207. doi: 10.1177/1745691612460684
  • Hickey, C., Di Lollo, V., & McDonald, J. J. (2009). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 21, 760–775. doi: 10.1162/jocn.2009.21039
  • Hietanen, J. K., Leppänen, J. M., Nummenmaa, L., & Astikainen, P. (2008). Visuospatial attention shifts by gaze and arrow cues: An ERP study. Brain Research, 1215, 123–136. doi: 10.1016/j.brainres.2008.03.091
  • Holmes, A., Mogg, K., Garcia, L. M., & Bradley, B. P. (2010). Neural activity associated with attention orienting triggered by gaze cues: A study of lateralized ERPs. Social Neuroscience, 5, 285–295. doi: 10.1080/17470910903422819
  • Hommel, B., Pratt, J., Colzato, L., & Godijn, R. (2001). Symbolic control of visual attention. Psychological Science, 12, 360–365. doi: 10.1111/1467-9280.00367
  • Hopf, J. M., & Mangun, G. R. (2000). Shifting visual attention in space: An electrophysiological analysis using high spatial resolution mapping. Clinical Neurophysiology, 111, 1241–1257. doi: 10.1016/S1388-2457(00)00313-8
  • Jolicœur, P., Brisson, B., & Robitaille, N. (2008). Dissociation of the N2pc and sustained posterior contralateral negativity in a choice response task. Brain Research, 1215, 160–172. doi: 10.1016/j.brainres.2008.03.059
  • Jongen, E. M., Smulders, F. T., & van der Heiden, J. S. (2007). Lateralized ERP components related to spatial orienting: Discriminating the direction of attention from processing sensory aspects of the cue. Psychophysiology, 44, 968–986. doi: 10.1111/j.1469-8986.2007.00557.x
  • Kelly, S. P., Gomez-Ramirez, M., & Foxe, J. J. (2009). The strength of anticipatory spatial biasing predicts target discrimination at attended locations: A high-density EEG study. European Journal of Neuroscience, 30, 2224–2234. doi: 10.1111/j.1460-9568.2009.06980.x
  • Kiefer, M. (2002). The N400 is modulated by unconsciously perceived masked words: Further evidence for a spreading activation account of N400 priming effects. Cognitive Brain Research, 13, 27–39. doi: 10.1016/S0926-6410(01)00085-4
  • Kiefer, M., & Brendel, D. (2006). Attentional modulation of unconscious ‘automatic’ processes: Evidence from event-related potentials in a masked priming paradigm. Journal of Cognitive Neuroscience, 18, 184–198. doi: 10.1162/jocn.2006.18.2.184
  • Kiss, M., van Velzen, J., & Eimer, M. (2008). The N2pc component and its links to attention shifts and spatially selective visual processing. Psychophysiology, 45, 240–249. doi: 10.1111/j.1469-8986.2007.00611.x
  • Kiyonaga, K., Grainger, J., Midgley, K., & Holcomb, P. J. (2007). Masked cross-modal repetition priming: An event-related potential investigation. Language and Cognitive Processes, 22, 337–376. doi: 10.1080/01690960600652471
  • Klinger, M. R., Burton, P. C., & Pitts, G. S. (2000). Mechanisms of unconscious priming. I. Response competition, not spreading activation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 441–455. doi: 10.1037//0278-7393.26.2.441
  • Kunde, W., Kiesel, A., & Hoffmann, J. (2003). Conscious control over the content of unconscious cognition. Cognition, 88, 223–242. doi: 10.1016/S0010-0277(03)00023-4
  • Lawrence, M. A. (2016). ez: Easy Analysis and Visualization of Factorial Experiments. R package version 4.4-0. https://CRAN.R-project.org/package=ez
  • Li, C., Liu, Q., & Hu, Z. (2017). Further evidence that N2pc reflects target enhancement rather than distracter suppression. Frontiers in Psychology, 8, 2275. doi: 10.3389/fpsyg.2017.02275
  • Livingstone, A. C., Christie, G. J., Wright, R. D., & McDonald, J. J. (2017). Signal enhancement, not active suppression, follows the contingent capture of visual attention. Journal of Experimental Psychology: Human Perception and Performance, 43, 219–224. doi: 10.1037/xhp0000339
  • Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: An open-source toolbox for the analysis of event-related potentials. Frontiers in Human Neuroscience, 8, 213. doi: 10.3389/fnhum.2014.00213
  • Luck, S. J., & Gaspelin, N. (2017). How to get statistically significant effects in any ERP experiment (and why you shouldn't). Psychophysiology, 54, 146–157. doi: 10.1111/psyp.12639
  • Luck, S. J., & Hillyard, S. A. (1994). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 20, 1000–1014. doi:10.1037/0096–1523.20.5.1000
  • Marcel, A. (1983). Conscious and unconscious perception: Experiments on visual masking and word recognition. Cognitive Psychology, 15, 197–237. doi:10.1016/0010-0285(83)90010-5 doi: 10.1016/0010-0285(83)90009-9
  • Martens, U., Ansorge, U., & Kiefer, M. (2011). Controlling the unconscious: Attentional task sets modulate subliminal semantic and visuomotor processes differentially. Psychological Science, 22, 282–291. doi: 10.1177/0956797610397056
  • MATLAB Release. (2014). The MathWorks, Inc., Natick, MA, USA.
  • Mattler, U. (2003). Priming of mental operations by masked stimuli. Perception & Psychophysics, 65, 167–187. doi: 10.3758/BF03194793
  • Naccache, L., Blandin, E., & Dehaene, S. (2002). Unconscious masked priming depends on temporal attention. Psychological Science, 13, 416–424. doi: 10.1111/1467-9280.00474
  • Ocampo, B., & Finkbeiner, M. (2013). The negative compatibility effect with relevant masks: A case for automatic motor inhibition. Frontiers in Psychology, 4, 822. doi: 10.3389/fpsyg.2013.00822
  • Ortells, J. J., Kiefer, M., Castillo, A., Megías, M., & Morillas, A. (2016). The semantic origin of unconscious priming: Behavioral and event-related potential evidence during category congruence priming from strongly and weakly related masked words. Cognition, 146, 143–157. doi: 10.1016/j.cognition.2015.09.012
  • Palmer, S., & Mattler, U. (2013). Masked stimuli modulate endogenous shifts of spatial attention. Consciousness and Cognition, 22, 486–503. doi: 10.1016/j.concog.2013.02.008
  • Posner, M. I., Snyder, C. R. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109, 160–174. doi: 10.1037/0096-3445.109.2.160
  • Praamstra, P. (2006). Prior information of stimulus location: Effects on ERP measures of visual selection and response selection. Brain Research, 1072, 153–160. doi: 10.1016/j.brainres.2005.11.098
  • Psychology Software Tools, Inc. [E-Prime 2.0]. (2013). Retrieved from http://www.pstnet.com
  • R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. URL https://www.R-project.org/
  • Reuss, H., Kiesel, A., Kunde, W., & Wühr, P. (2012). A cue from the unconscious–masked symbols prompt spatial anticipation. Frontiers in Psychology, 3, 397. doi: 10.3389/fpsyg.2012.00397
  • Reuss, H., Pohl, C., Kiesel, A., & Kunde, W. (2011). Follow the sign! Top-down contingent attentional capture of masked arrow cues. Advances in Cognitive Psychology, 7, 82–91. doi: 10.2478/v10053-008-0091-3
  • Rohenkohl, G., Gould, I. C., Pessoa, J., & Nobre, A. C. (2014). Combining spatial and temporal expectations to improve visual perception. Journal of Vision, 14, 8. doi: 10.1167/14.4.8
  • Schmidt, F., & Schmidt, T. (2010). Feature-based attention to unconscious shapes and colors. Attention, Perception, & Psychophysics, 72, 1480–1494. doi: 10.3758/APP.72.6.1480
  • Schoeberl, T., Fuchs, I., Theeuwes, J., & Ansorge, U. (2015). Stimulus-driven attentional capture by subliminal onset cues. Attention, Perception, & Psychophysics, 77, 737–748. doi: 10.3758/s13414-014-0802-4
  • Talsma, D., Slagter, H. A., Nieuwenhuis, S., Hage, J., & Kok, A. (2005). The orienting of visuospatial attention: An event-related brain potential study. Cognitive Brain Research, 25, 117–129. doi: 10.1016/j.cogbrainres.2005.04.013
  • Tassinari, G., Aglioti, S., Chelazzi, L., Peru, A., & Berlucchi, G. (1994). Do peripheral non-informative cues induce early facilitation of target detection? Vision Research, 34, 179–189. doi: 10.1016/0042-6989(94)90330-1
  • van Velzen, J., & Eimer, M. (2003). Early posterior ERP components do not reflect the control of attentional shifts toward expected peripheral events. Psychophysiology, 40, 827–831. doi: 10.1111/1469-8986.00083