7,300
Views
141
CrossRef citations to date
0
Altmetric
Research Article

Progress toward resolving the attentional capture debate

, , , &
Pages 1-21 | Received 15 Oct 2020, Accepted 07 Nov 2020, Published online: 01 Dec 2020

References

  • Adams, O. J., & Gaspelin, N. (2020). Assessing introspective awareness of attention capture. Attention, Perception, & Psychophysics, 82(4), 1586–1598. https://doi.org/10.3758/s13414-019-01936-9
  • Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences, 108(25), 10367–10371. https://doi.org/10.1073/pnas.1104047108.
  • Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–443. https://doi.org/10.1016/j.tics.2012.06.010.
  • Bacigalupo, F., & Luck, S. J. (2019). Lateralized suppression of alpha-band EEG activity as a mechanism of target processing. The Journal of Neuroscience, 39(5), 900–917. https://doi.org/10.1523/JNEUROSCI.0183-18.2018
  • Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55(5), 485–496. https://doi.org/10.3758/BF03205306
  • Barras, C., & Kerzel, D. (2016). Active suppression of salient-but-irrelevant stimuli does not underlie resistance to visual interference. Biological Psychology, 121, 74–83. https://doi.org/10.1016/j.biopsycho.2016.10.004.
  • Becker, S. I., Folk, C. L., & Remington, R. W. (2010). The role of relational information in contingent capture. Journal of Experimental Psychology: Human Perception and Performance, 36(6), 1460–1476. https://doi.org/10.1037/a0020370.
  • Belopolsky, A. V., Kramer, A. F., & Theeuwes, J. (2008). The role of awareness in processing of oculomotor capture: Evidence from event-related potentials. Journal of Cognitive Neuroscience, 20(12), 2285–2297. https://doi.org/10.1162/jocn.2008.20161
  • Belopolsky, A. V., Schreij, D., & Theeuwes, J. (2010). What is top-down about contingent capture? Attention, Perception, & Psychophysics, 72(2), 326–341. https://doi.org/10.3758/APP.72.2.326
  • Belopolsky, A. V., Zwaan, L., Theeuwes, J., & Kramer, A. F. (2007). The size of an attentional window modulates attentional capture by color singletons. Psychonomic Bulletin & Review, 14(5), 934–938. https://doi.org/10.3758/BF03194124
  • Bichot, N. P., & Schall, J. D. (2002). Priming in macaque frontal cortex during popout visual search: Feature-based facilitation and location-based inhibition of return. The Journal of Neuroscience, 22(11), 4675–4685. https://doi.org/10.1523/JNEUROSCI.22-11-04675.2002.
  • Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113. https://doi.org/10.1016/j.tics.2011.12.010
  • Burnham, B. R. (2018). Selectively ignoring locations does not modulate contingent involuntary orienting, but selectively attending does. Visual Cognition, 26(1), 48–70. https://doi.org/10.1080/13506285.2017.1385553.
  • Burra, N., & Kerzel, D. (2013). Attentional capture during visual search is attenuated by target predictability: Evidence from the N2pc, Pd, and topographic segmentation. Psychophysiology, 50(5), 422–430. https://doi.org/10.1111/psyp.12019.
  • Chang, S., & Egeth, H. E. (2019). Enhancement and suppression flexibly guide attention. Psychological Science. https://doi.org/10.1177/0956797619878813
  • Cosman, J. D., Lowe, K. A., Zinke, W., Woodman, G. F., & Schall, J. D. (2018a). Prefrontal control of visual distraction. Current Biology, 28(3), 414–420.e3. https://doi.org/10.1016/j.cub.2017.12.023.
  • Cunningham, C. A., & Egeth, H. E. (2016). Taming the white Bear: Initial costs and eventual benefits of distractor inhibition. Psychological Science. https://doi.org/10.1177/0956797615626564.
  • de Vries, I. E., Savran, E., van Driel, J., & Olivers, C. N. (2019). Oscillatory mechanisms of preparing for visual distraction. Journal of Cognitive Neuroscience, 31(12), 1873–1894. https://doi.org/10.1162/jocn_a_01460
  • Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433–458. https://doi.org/10.1037/0033-295X.96.3.433.
  • Egeth, H. (2018). Comment on Theeuwes’s characterization of visual selection. Journal of Cognition, 1(1). https://doi.org/10.5334/joc.29
  • Eimer, M., & Kiss, M. (2008). Involuntary attentional capture is determined by task set: Evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 20(8), 1423–1433. https://doi.org/10.1162/jocn.2008.20099
  • Failing, M., & Theeuwes, J. (2018). Selection history: How reward modulates selectivity of visual attention. Psychonomic Bulletin & Review, 25(2), 514–538. https://doi.org/10.3758/s13423-017-1380-y
  • Feldmann-Wüstefeld, T., Busch, N. A., & Schubö, A. (2020). Failed suppression of salient stimuli precedes behavioral errors. Journal of Cognitive Neuroscience, 32(2), 367–377. https://doi.org/10.1162/jocn_a_01502
  • Feldmann-Wüstefeld, T., Uengoer, M., & Schubö, A. (2015). You see what you have learned. Evidence for an interrelation of associative learning and visual selective attention. Psychophysiology, 52(11), 1483–1497. https://doi.org/10.1111/psyp.12514.
  • Feldmann-Wüstefeld, T., & Vogel, E. K. (2018). Neural evidence for the contribution of active suppression during working memory filtering. Cerebral Cortex. https://doi.org/10.1093/cercor/bhx336.
  • Ferrante, O., Patacca, A., Di Caro, V., Della Libera, C., Santandrea, E., & Chelazzi, L. (2018). Altering spatial priority maps via statistical learning of target selection and distractor filtering. Cortex, 102, 67–95. https://doi.org/10.1016/j.cortex.2017.09.027.
  • Folk, C. L., & Anderson, B. A. (2010). Target-uncertainty effects in attentional capture: Color-singleton set or multiple attentional control settings? Psychonomic Bulletin & Review, 17(3), 421–426. https://doi.org/10.3758/PBR.17.3.421.
  • Folk, C. L., Leber, A. B., & Egeth, H. E. (2002). Made you blink! contingent attentional capture produces a spatial blink. Perception & Psychophysics, 64(5), 741–753. https://doi.org/10.3758/BF03194741.
  • Folk, C. L., & Remington, R. (2006). Top-down modulation of preattentive processing: Testing the recovery account of contingent capture. Visual Cognition, 14(4–8), 445–465. https://doi.org/10.1080/13506280500193545.
  • Folk, C. L., & Remington, R. W. (1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 847–858. https://doi.org/10.1037/0096-1523.24.3.847
  • Folk, C. L., & Remington, R. W. (1999). Can new objects override attentional control settings? Perception & Psychophysics, 61(4), 727–739. https://doi.org/10.3758/BF03205541
  • Folk, C. L., & Remington, R. W. (2008). Bottom-up priming of top-down attentional control settings. Visual Cognition, 16(2–3), 215–231. https://doi.org/10.1080/13506280701458804.
  • Folk, C. L., & Remington, R. W. (2010). A critical evaluation of the disengagement hypothesis. Acta Psychologica, 135(2), 103–105. https://doi.org/10.1016/j.actpsy.2010.04.012.
  • Folk, C. L., & Remington, R. W. (2015). Unexpected abrupt onsets can override a top-down set for color. Journal of Experimental Psychology: Human Perception and Performance, 41(4), 1153–1165. https://doi.org/10.1037/xhp0000084
  • Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030–1044. https://doi.org/10.1037/0096-1523.18.4.1030.
  • Franconeri, S. L., & Simons, D. J. (2003). Moving and looming stimuli capture attention. Perception & Psychophysics, 65(7), 999–1010. https://doi.org/10.3758/BF03194829
  • Franconeri, S. L., Simons, D. J., & Junge, J. a. (2004). Searching for stimulus-driven shifts of attention. Psychonomic Bulletin & Review, 11(5), 876–881. https://doi.org/10.3758/BF03196715.
  • Gao, Y., & Theeuwes, J. (2020). Independent effects of statistical learning and top-down attention. Attention, Perception, & Psychophysics, 1–12. https://doi.org/10.3758/s13414-020-02115-x
  • Gaspar, J. M., Christie, G. J., Prime, D. J., Jolicœur, P., & McDonald, J. J. (2016). Inability to suppress salient distractors predicts low visual working memory capacity. Proceedings of the National Academy of Sciences, 113(13), 3693–3698. https://doi.org/10.1073/pnas.1523471113
  • Gaspar, J. M., & McDonald, J. J. (2014). Suppression of salient objects prevents distraction in visual search. Journal of Neuroscience, 34(16), 5658–5666. https://doi.org/10.1523/JNEUROSCI.4161-13.2014.
  • Gaspelin, N., Gaspar, J. M., & Luck, S. J. (2019). Oculomotor inhibition of salient distractors: Voluntary inhibition cannot override selection history. Visual Cognition, 27(3–4), 227–246. https://doi.org/10.1080/13506285.2019.1600090.
  • Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26(11), 1740–1750. https://doi.org/10.1177/0956797615597913
  • Gaspelin, N., Leonard, C. J., & Luck, S. J. (2017). Suppression of overt attentional capture by salient-but-irrelevant color singletons. Attention, Perception, & Psychophysics, 79(1), 45–62. https://doi.org/10.3758/s13414-016-1209-1.
  • Gaspelin, N., & Luck, S. J. (2018a). Distinguishing among potential mechanisms of singleton suppression. Journal of Experimental Psychology: Human Perception and Performance, 44(4), 626–644. https://doi.org/10.1037/xhp0000484
  • Gaspelin, N., & Luck, S. J. (2018b). Combined electrophysiological and behavioral evidence for the suppression of salient distractors. Journal of Cognitive Neuroscience, 30(9), 1265–1280. https://doi.org/10.1162/jocn_a_01279
  • Gaspelin, N., & Luck, S. J. (2018c). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22(1), 79–92. https://doi.org/10.1016/j.tics.2017.11.001.
  • Gaspelin, N., & Luck, S. J. (2018d). “Top-down” does not mean “voluntary”. Journal of Cognition, 1(25), 1–4. http://doi.org/10.5334/joc.28
  • Gaspelin, N., & Luck, S. J. (2019). Inhibition as a potential resolution to the attentional capture debate. Current Opinion in Psychology, 29, 12–18. https://doi.org/10.1016/j.copsyc.2018.10.013
  • Gaspelin, N., Ruthruff, E., & Lien, M. (2016). The problem of latent attentional capture: Easy visual search conceals capture by task-irrelevant abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 42(8), 1104–1120. https://doi.org/10.1037/xhp0000214.
  • Geyer, T., Müller, H. J., & Krummenacher, J. (2008). Expectancies modulate attentional capture by salient color singletons. Vision Research, 48(11), 1315–1326. https://doi.org/10.1016/j.visres.2008.02.006
  • Gibson, B. S., & Kelsey, E. M. (1998). Stimulus-driven attentional capture is contingent on attentional set for displaywide visual features. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 699–706. https://doi.org/10.1037/0096-1523.24.3.699.
  • Harris, A. M., Becker, S. I., & Remington, R. W. (2015). Capture by colour: Evidence for dimension-specific singleton capture. Attention, Perception, & Psychophysics, 77(7), 2305–2321. https://doi.org/10.3758/s13414-015-0927-0.
  • Henderson, J. M. (2003). Human gaze control during real-world scene perception. Trends in Cognitive Sciences, 7(11), 498–504. https://doi.org/10.1016/j.tics.2003.09.006.
  • Hickey, C., Di Lollo, V., & McDonald, J. J. (2009). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 21(4), 760–775. https://doi.org/10.1162/jocn.2009.21039.
  • Hickey, C., McDonald, J. J., & Theeuwes, J. (2006). Electrophysiological evidence of the capture of visual attention. Journal of Cognitive Neuroscience, 18(4), 604–613. https://doi.org/10.1162/jocn.2006.18.4.604
  • Hollingworth, A., Simons, D. J., & Franconeri, S. L. (2010). New objects do not capture attention without a sensory transient. Attention, Perception, & Psychophysics, 72(5), 1298–1310. https://doi.org/10.3758/APP.72.5.1298
  • Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3), 194–203. https://doi.org/10.1038/35058500.
  • Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by Oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neuroscience, 4. https://doi.org/10.3389/fnhum.2010.00186.
  • Jiang, Y. V. (2018). Habitual versus goal-driven attention. Cortex, 102, 107–120. https://doi.org/10.1016/j.cortex.2017.06.018
  • Jonides, J., & Yantis, S. (1988). Uniqueness of abrupt visual onset in capturing attention. Perception & Psychophysics, 43(4), 346–354. https://doi.org/10.3758/BF03208805
  • Kerzel, D., & Burra, N. (2020). Capture by context elements, Not attentional suppression of distractors, explains the Pd with small search displays. Journal of Cognitive Neuroscience, 32(6), 1170–1183. https://doi.org/10.1162/jocn_a_01535
  • Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying neural circuitry. http://www.ncbi.nlm.nih.gov/pubmed/3836989
  • Lamy, D., Carmel, T., Egeth, H. E., & Leber, A. B. (2006). Effects of search mode and intertrial priming on singleton search. Perception & Psychophysics, 68(6), 919–932. https://doi.org/10.3758/BF03193355
  • Lamy, D., & Egeth, H. E. (2003). Attentional capture in singleton-detection and feature-search modes. Journal of Experimental Psychology: Human Perception and Performance, 29(5), 1003–1020. https://doi.org/10.1037/0096-1523.29.5.1003.
  • Leber, A. B. (2010). Neural predictors of within-subject fluctuations in attentional control. Journal of Neuroscience, 30(34), 11458–11465. https://doi.org/10.1523/JNEUROSCI.0809-10.2010
  • Leber, A. B., & Egeth, H. E. (2006). Attention on autopilot: Past experience and attentional set. Visual Cognition, 14(4–8), 565–583. https://doi.org/10.1080/13506280500193438.
  • Lien, M.-C., Ruthruff, E., Goodin, Z., & Remington, R. W. (2008). Contingent attentional capture by top-down control settings: Converging evidence from event-related potentials. Journal of Experimental Psychology: Human Perception and Performance, 34(3), 509–530. https://doi.org/10.1037/0096-1523.34.3.509.
  • Lien, M.-C., Ruthruff, E., & Johnston, J. C. (2010). Attentional capture with rapidly changing attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 36(1), 1–16. https://doi.org/10.1037/a0015875.
  • Luck, S. J. (2012). Electrophysiological correlates of the focusing of attention within complex visual scenes: The N2pc and related ERP components (pp. 329–360). S. J. Luck & E. S. Kappenman (Eds.). Oxford University Press.
  • Luck, S. J., & Hillyard, S. A. (1990). Electrophysiological evidence for parallel and serial processing during visual search. Perception & Psychophysics, 48(6), 603–617. https://doi.org/10.3758/BF03211606
  • Luck, S. J., & Hillyard, S. A. (1994). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 20(5), 1000–1014. https://doi.org/10.1037/0096-1523.20.5.1000.
  • MacLean, M. H., & Giesbrecht, B. (2015). Neural evidence reveals the rapid effects of reward history on selective attention. Brain Research, 1606, 86–94. https://doi.org/10.1016/j.brainres.2015.02.016
  • Maunsell, J. H. R., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in Neurosciences, 29(6), 317–322. https://doi.org/10.1016/j.tins.2006.04.001.
  • Moher, J., Abrams, J., Egeth, H. E., Yantis, S., & Stuphorn, V. (2011). Trial-by-trial Adjustments of top-Down set Modulate Oculomotor Capture, 897–903. https://doi.org/10.3758/s13423-011-0118-5.
  • Moher, J., & Egeth, H. E. (2012). The ignoring paradox: Cueing distractor features leads first to selection, then to inhibition of to-be-ignored items. Attention, Perception, & Psychophysics, 74(8), 1590–1605. https://doi.org/10.3758/s13414-012-0358-0.
  • Mounts, J. R. W. (2000). Evidence for suppressive mechanisms in attentional selection: Feature singletons produce inhibitory surrounds. Perception & Psychophysics, 62(5), 969–983. https://doi.org/10.3758/BF03212082.
  • Nothdurft, H.-C. (1993). The role of features in preattentive vision: Comparison of orientation, motion and color cues. Vision Research, 33(14), 1937–1958. https://doi.org/10.1016/0042-6989(93)90020-W
  • Pashler, H. E. (1988). Cross-dimensional interaction and texture segregation. Perception & Psychophysics, 43(4), 307–318. https://doi.org/10.3758/BF03208800
  • Pinto, Y., Olivers, C. N. L., & Theeuwes, J. (2005). Target uncertainty does not lead to more distraction by singletons: Intertrial priming does. Perception & Psychophysics, 67(8), 1354–1361. https://doi.org/10.3758/BF03193640.
  • Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25. https://doi.org/10.1080/00335558008248231
  • Remington, R. W., Folk, C. L., & McLean, J. P. (2001). Contingent attentional capture or delayed allocation of attention? Perception & Psychophysics, 63(2), 298–307. https://doi.org/10.3758/BF03194470.
  • Ruthruff, E., Faulks, M., Maxwell, J. W., & Gaspelin, N. (2020). Attentional dwelling and capture by color singletons. Attention Perception and Psychophysics, 82(6), 3048–3064. https://doi.org/10.3758/s13414-020-02054-7
  • Ruthruff, E., & Gaspelin, N. (2018). Immunity to attentional capture at ignored locations. Attention, Perception, & Psychophysics, 80(2), 325–336. https://doi.org/10.3758/s13414-017-1440-4.
  • Sawaki, R., Geng, J. J., & Luck, S. J. (2012). A common neural mechanism for preventing and terminating the allocation of attention. Journal of Neuroscience, 32(31), 10725–10736. https://doi.org/10.1523/JNEUROSCI.1864-12.2012
  • Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72(6), 1455–1470. https://doi.org/10.3758/APP.
  • Stilwell, B. T., Bahle, B., & Vecera, S. P. (2019). Feature-based statistical regularities of distractors modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 45(3), 419–433. https://doi.org/10.1037/xhp0000613
  • Theeuwes, J. (1991a). Cross-dimensional perceptual selectivity. Perception & Psychophysics, 50(2), 184–193. https://doi.org/10.3758/BF03212219
  • Theeuwes, J. (1991b). Exogenous and endogenous control of attention: The effect of visual onsets and offsets. Perception & Psychophysics, 49(1), 83–90. https://doi.org/10.3758/BF03211619
  • Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51(6), 599–606. https://doi.org/10.3758/BF03211656.
  • Theeuwes, J. (1993). Visual selective attention: A theoretical analysis. Acta Psychologica, 83(2), 93–154. https://doi.org/10.1016/0001-6918(93)90042-P
  • Theeuwes, J. (1994). Stimulus-driven capture and attentional set: Selective search for color and visual abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 799–806. https://doi.org/10.1037/0096-1523.20.4.799
  • Theeuwes, J. (2004). Top-down search strategies cannot override attentional capture. Psychonomic Bulletin & Review, 11(1), 65–70. https://doi.org/10.3758/BF03206462.
  • Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135(2), 77–99. https://doi.org/10.1016/j.actpsy.2010.02.006.
  • Theeuwes, J. (2018). Visual selection: Usually fast and automatic; Seldom slow and Volitional. Journal of Cognition, 1(1), 1–15. https://doi.org/10.5334/joc.13.
  • Theeuwes, J., Atchley, P., & Kramer, A. F. (2000). On the time course of top-down and bottom-up control of visual attention. Control of Cognitive Processes: Attention and Performance XVIII, 105–124. https://doi.org/10.1002/acp.849
  • Theeuwes, J., de Vries, G.-J., & Godijn, R. (2003). Attentional and oculomotor capture with static singletons. Perception & Psychophysics, 65(5), 735–746. https://doi.org/10.3758/BF03194810.
  • Theeuwes, J., Kramer, A. F., Hahn, S., & Irwin, D. E. (1998). Our eyes do not always go where we want them to go: Capture of the eyes by new objects. Psychological Science, 9(5), 379–385. https://doi.org/10.1111/1467-9280.00071
  • Tseng, Y.-C., Glaser, J. I., Caddigan, E., & Lleras, A. (2014). Modeling the effect of selection history on pop-out visual search. PLoS One, 9(3). https://doi.org/10.1371/journal.pone.0089996
  • Turatto, M., Bonetti, F., & Pascucci, D. (2018). Filtering visual onsets via habituation: A context-specific long-term memory of irrelevant stimuli. Psychonomic Bulletin & Review, 25(3), 1028–1034. https://doi.org/10.3758/s13423-017-1320-x
  • Valdes-Sosa, M., Bobes, M. A., Rodriguez, V., & Pinilla, T. (1998). Switching attention without shifting the spotlight: Object-based attentional modulation of brain potentials. Journal of Cognitive Neuroscience, 10(1), 137–151. https://doi.org/10.1162/089892998563743
  • van Moorselaar, D., & Slagter, H. A. (2019). Learning what is irrelevant or relevant: Expectations facilitate distractor inhibition and target facilitation through distinct neural mechanisms. The Journal of Neuroscience, 39(35), 6953–6967. https://doi.org/10.1523/JNEUROSCI.0593-19.2019
  • Vatterott, D. B., Mozer, M. C., & Vecera, S. P. (2018). Rejecting salient distractors: Generalization from experience. Attention, Perception, & Psychophysics, 80(2), 485–499. https://doi.org/10.3758/s13414-017-1465-8.
  • Vatterott, D. B., & Vecera, S. P. (2012). Experience-dependent attentional tuning of distractor rejection. Psychonomic Bulletin & Review, 19(5), 871–878. https://doi.org/10.3758/s13423-012-0280-4.
  • Vecera, S. P., Cosman, J. D., Vatterott, D. B., & Roper, Z. J. (2014). The control of visual attention: Toward a unified account. In Ross, B. H. (Ed.), Psychology of learning and motivation (Vol. 60, pp. 303–347). Elsevier. https://doi.org/10.1016/B978-0-12-800090-8.00008-1
  • Wang, B., & Theeuwes, J. (2018a). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 44(1), 13–17. https://doi.org/10.1037/xhp0000472.
  • Wang, B., & Theeuwes, J. (2018b). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention, Perception, & Psychophysics, 80(4), 860–870. https://doi.org/10.3758/s13414-018-1493-z.
  • Wang, B., & Theeuwes, J. (2018c). Statistical regularities modulate attentional capture independent of search strategy. Attention, Perception, & Psychophysics, 80(7), 1763–1774. https://doi.org/10.3758/s13414-018-1562-3.
  • Wang, B., & Theeuwes, J. (2020). Salience determines attentional orienting in visual selection. Journal of Experimental Psychology: Human Perception and Performance, https://doi.org/10.1037/xhp0000796.
  • Wang, B., van Driel, J., Ort, E., & Theeuwes, J. (2019). Anticipatory distractor suppression elicited by statistical regularities in visual search. Journal of Cognitive Neuroscience, 31(10), 1535–1548. https://doi.org/10.1162/jocn_a_01433
  • Weaver, M. D., van Zoest, W., & Hickey, C. (2017). A temporal dependency account of attentional inhibition in oculomotor control. NeuroImage, 147, 880–894. https://doi.org/10.1016/j.neuroimage.2016.11.004.
  • Wolfe, J. M., & Horowitz, T. S. (2017). Five factors that guide attention in visual search. Nature Human Behaviour, 1(3), 1–8. https://doi.org/10.1038/s41562-017-0058.
  • Won, B.-Y., Kosoyan, M., & Geng, J. J. (2019). Evidence for second-order singleton suppression based on probabilistic expectations. Journal of Experimental Psychology: Human Perception and Performance, 45(1), 125–138. https://doi.org/10.1037/xhp0000594.
  • Wu, S.-C., & Remington, R. W. (2003). Characteristics of covert and overt visual orienting: Evidence from attentional and oculomotor capture. Journal of Experimental Psychology: Human Perception and Performance, 29(5), 1050–1067. https://doi.org/10.1037/0096-1523.29.5.1050.
  • Wu, S.-C., Remington, R. W., & Folk, C. L. (2014). Onsets do not override top-down goals, but they are responded to more quickly. Attention, Perception, & Psychophysics, 76(3), 649–654. https://doi.org/10.3758/s13414-014-0637-z.
  • Wyble, B., Folk, C., & Potter, M. C. (2013). Contingent attentional capture by conceptually relevant images. Journal of Experimental Psychology: Human Perception and Performance, 39(3), 861–871. https://doi.org/10.1037/a0030517.
  • Yantis, S. (1993). Stimulus-driven attentional capture and attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 19(3), 676–681. https://doi.org/10.1037/0096-1523.19.3.676
  • Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 601–621. https://doi.org/10.1037/0096-1523.10.5.601
  • Zhang, W., & Luck, S. J. (2009). Feature-based attention modulates feedforward visual processing. Nature Neuroscience, 12(1), 24–25. https://doi.org/10.1038/nn.2223.
  • Zivony, A., & Lamy, D. (2018). Contingent attentional engagement: Stimulus- and goal-driven capture have qualitatively different consequences. Psychological Science, 29(12), 1930–1941. https://doi.org/10.1177/0956797618799302.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.