207
Views
0
CrossRef citations to date
0
Altmetric
Articles

Which visual property correlates with the relationship between numerosity sense and arithmetic fluency

, , & ORCID Icon
Pages 517-526 | Received 20 Oct 2021, Accepted 20 Sep 2022, Published online: 28 Sep 2022

References

  • Allik, J., & Tuulmets, T. (1991). Occupancy model of perceived numerosity. Perception & Psychophysics, 49(4), 303–314. https://doi.org/10.3758/BF03205986
  • Anobile, G., Arrighi, R., Castaldi, E., Grassi, E., Pedonese, L., Maldonado Moscoso, P., & Burr, D. (2017). Spatial but Not temporal numerosity thresholds correlate with formal math skills in children. Developmental Psychology, 54, 458–473. https://doi.org/10.1037/dev0000448
  • Anobile, G., Castaldi, E., Maldonado Moscoso, P., Burr, D., & Arrighi, R. (2020). “Groupitizing”: a strategy for numerosity estimation. Scientific Reports, 10, 13436.
  • Baek, S., Daitch, A. L., Pinheiro-Chagas, P., & Parvizi, J. (2018). Neuronal population responses in the human ventral temporal and lateral parietal cortex during arithmetic processing with digits and number words. Journal of Cognitive Neuroscience, 30(9), 1315–1322. https://doi.org/10.1162/jocn_a_01296
  • Byosiere, S.-E., Chouinard, P., Howell, T., & Bennett, P. (2019). The effects of physical luminance on colour discrimination in dogs: A cautionary tale. Applied Animal Behaviour Science, 212, 58–65. https://doi.org/10.1016/j.applanim.2019.01.004
  • Castaldi, E., Piazza, M., Dehaene, S., Vignaud, A., & Eger, E. (2019). Attentional amplification of neural codes for number independent of other quantities along the dorsal visual stream.
  • Castaldi, E., Turi, M., Cicchini, G. M., Gassama, S., & Eger, E. (2022). Reduced 2D form coherence and 3D structure from motion sensitivity in developmental dyscalculia. Neuropsychologia, 166, 108140. https://doi.org/10.1016/j.neuropsychologia.2021.108140
  • Cheng, D., Xiao, Q., Cui, J., Chen, C., Zeng, J., Chen, Q., & Zhou, X. (2020). Short-term numerosity training promotes symbolic arithmetic in children with developmental dyscalculia: The mediating role of visual form perception. Developmental Science, 23, 4. https://doi.org/10.1111/desc.12910
  • Cheng, D. Z., Xiao, Q., Chen, Q., Cui, J. X., & Zhou, X. L. (2018). Dyslexia and dyscalculia are characterized by common visual perception deficits. Developmental Neuropsychology, 43(6), 497–507. https://doi.org/10.1080/87565641.2018.1481068
  • Cicchini, G. M., Anobile, G., & Burr, D. C. (2016). Spontaneous perception of numerosity in humans. Nature Communications, 7(1). https://doi.org/10.1038/ncomms12536
  • Cirino, P. (2011). The interrelationships of mathematical precursors in Kindergarten. Journal of Experimental Child Psychology, 108(4), 713–733. https://doi.org/10.1016/j.jecp.2010.11.004
  • Cui, J. X., Zhang, Y. Y., Wan, S. R., Chen, C. S., Zeng, J. Y., & Zhou, X. L. (2019). Visual form perception is fundamental for both reading comprehension and arithmetic computation. Cognition, 189, 141–154. https://doi.org/10.1016/j.cognition.2019.03.014
  • Dakin, S., Tibber, M., Greenwood, J., Kingdom, F., & Morgan, M. (2011). A common visual metric for approximate number and density. Proceedings of the National Academy of Sciences, 108(49), 19552–19557. https://doi.org/10.1073/pnas.1113195108
  • Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314. https://doi.org/10.1016/j.tics.2004.05.002
  • Geary, D. C., Bailey, D. H., & Hoard, M. K. (2009). Predicting mathematical achievement and mathematical learning disability with a simple screening tool. Journal of Psychoeducational Assessment, 27(3), 265–279. https://doi.org/10.1177/0734282908330592
  • Gebuis, T., Cohen Kadosh, R., & Gevers, W. (2016). Sensory-integration system rather than approximate number system underlies numerosity processing: A critical review. Acta Psychologica, 171, 17–35. https://doi.org/10.1016/j.actpsy.2016.09.003
  • Gebuis, T., & Reynvoet, B. (2011). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141, 642–648. https://doi.org/10.1037/a0026218
  • Grotheer, M., Herrmann, K.-H., & Kovacs, G. (2016). Neuroimaging evidence of a bilateral representation for visually presented numbers. Journal of Neuroscience, 36(1), 88–97. https://doi.org/10.1523/jneurosci.2129-15.2016
  • Grotheer, M., Jeska, B., & Grill-Spector, K. (2018). A preference for mathematical processing outweighs the selectivity for Arabic numbers in the inferior temporal gyrus. Neuroimage, 175, 188–200. https://doi.org/10.1016/j.neuroimage.2018.03.064
  • Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665–668. https://doi.org/10.1038/nature07246
  • Hermes, D., Rangarajan, V., Foster, B., King, J.-R., Kaşıkçı, I., Miller, K., & Parvizi, J. (2015). Electrophysiological responses in the ventral temporal cortex during reading of numerals and calculation. Cerebral Cortex, 1991, bhv250. https://doi.org/10.1093/cercor/bhv250
  • Hurewitz, F., Gelman, R., & Schnitzer, B. (2007). Sometimes area counts more than number. Proceedings of the National Academy of Sciences, 103(51), 19599–19604. https://doi.org/10.1073/pnas.0609485103
  • Hyde, D. C., Khanum, S., & Spelke, E. S. (2014). Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition, 131(1), 92–107. https://doi.org/10.1016/j.cognition.2013.12.007
  • Katzin, N., Katzin, D., Rosén, A., Henik, A., & Salti, M. (2019). Putting the world in mind: The case of mental representation of quantity. Cognition, 195, 104088. https://doi.org/10.1016/j.cognition.2019.104088
  • Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8-9-year-old students. Cognition, 93(2), 99–125. https://doi.org/10.1016/j.cognition.2003.11.004
  • Li, M. Y., Cheng, D. Z., Lu, Y. J., & Zhou, X. L. (2020). Neural association between non-verbal number sense and arithmetic fluency. Human Brain Mapping, 41(18), 5128–5140. https://doi.org/10.1002/hbm.25179
  • Maldonado Moscoso, P., Castaldi, E., Burr, D., Arrighi, R., & Anobile, G. (2020). Grouping strategies in number estimation extend the subitizing range. Scientific Reports, 10, 14979.
  • Malone, S. A., Burgoyne, K., & Hulme, C. (2020). Number knowledge and the approximate number system are two critical foundations for early arithmetic development. Journal of Educational Psychology, 112(6), 1167–1182. https://doi.org/10.1037/edu0000426
  • Malone, S. A., Pritchard, V. E., Heron-Delaney, M., Burgoyne, K., Lervag, A., & Hulme, C. (2019). The relationship between numerosity discrimination and arithmetic skill reflects the approximate number system and cannot be explained by inhibitory control. Journal of Experimental Child Psychology, 184, 220–231. https://doi.org/10.1016/j.jecp.2019.02.009
  • Matejko, A. A., & Ansari, D. (2015). Drawing connections between white matter and numerical and mathematical cognition: A literature review. Neuroscience & Biobehavioral Reviews, 48, 35–52.
  • Park, J., & Brannon, E. M. (2013). Training the approximate number system improves math proficiency. Psychological Science, 24(10), 2013–2019. https://doi.org/10.1177/0956797613482944
  • Park, J., DeWind, N. K., Woldorff, M. G., & Brannon, E. M. (2016). Rapid and direct encoding of numerosity in the visual stream. Cerebral Cortex, 26(2), 748–763. https://doi.org/10.1093/cercor/bhv017
  • Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., Dehaene, S., & Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33–41. https://doi.org/10.1016/j.cognition.2010.03.012
  • Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547–555. https://doi.org/10.1016/j.neuron.2004.10.014
  • Pinheiro-Chagas, P., Daitch, A., Parvizi, J., & Dehaene, S. (2018). Brain mechanisms of arithmetic: A crucial role for ventral temporal cortex. Journal of Cognitive Neuroscience, 30(12), 1757–1772. https://doi.org/10.1162/jocn_a_01319
  • Raven, J. (2000). The Raven's progressive matrices: Change and stability over culture and time. Cognitive Psychology, 41(1), 1–48. https://doi.org/10.1006/cogp.1999.0735
  • Schneider, W., & McGrew, K. (2012). The Cattell-Horn-Carroll model of intelligence In P. L. H. Dawn P. Flanagan (Ed.), Contemporary intellectual assessment: Theories, tests, and issues (pp. 99–144): Guilford Press.
  • Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701–703. https://doi.org/10.1126/science.171.3972.701
  • Shum, J., Hermes, D., Foster, B. L., Dastjerdi, M., Rangarajan, V., Winawer, J., Miller K. J., & Parvizi, J. (2013). A brain area for visual numerals. Journal of Neuroscience, 33(16), 6709–6715. https://doi.org/10.1523/jneurosci.4558-12.2013
  • Szwed, M., Cohen, L., Qiao, E., & Dehaene, S. (2009). The role of invariant line junctions in object and visual word recognition. Vision Research, 49(7), 718–725. https://doi.org/10.1016/j.visres.2009.01.003
  • Van Rinsveld, A., Wens, V., Guillaume, M., Beuel, A., Gevers, W., De Tiège, X., & Content, A. (2021). Automatic processing of numerosity in human neocortex evidenced by occipital and parietal neuromagnetic responses. Cerebral Cortex Communications, 2(2), 1–12.
  • Winter, J., & Wagemans, J. (2004). Contour-based object identification and segmentation: Stimuli, norms and data, and software tools. Behavior Research Methods, Instruments, & Computers, 36(4), 604–624. https://doi.org/10.3758/BF03206541
  • Yeo, D. J., Wilkey, E. D., & Price, G. R. (2017). The search for the number form area: A functional neuroimaging meta-analysis. Neuroscience and Biobehavioral Reviews, 78, 145–160. https://doi.org/10.1016/j.neubiorev.2017.04.027
  • Zhang, Y., Liu, T., Chen, C., & Zhou, X. (2019). Visual form perception supports approximate number system acuity and arithmetic fluency. Learning and Individual Differences, 71, 1–12. https://doi.org/10.1016/j.lindif.2019.02.008
  • Zhou, X., Chen, C., Zang, Y., Dong, Q., Chen, C., Qiao, S., & Gong, Q. (2007). Dissociated brain organization for single-digit addition and multiplication. Neuroimage, 35(2), 871–880.
  • Zhou, X., Wei, W., Zhang, Y., Cui, J., & Chen, C. (2015). Visual perception can account for the close relation between numerosity processing and computational fluency. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01364
  • Zhou, X., & Cheng, D. (2015). When and why numerosity processingis associated with developmental dyscalculia. In S. Chinn (Ed.), The Routledge international handbook of dyscalculia and mathematical (Vol. 4, pp. 78–89). Exeter, Devon, UK: Routledge, Swales &Willis Ltd.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.