103
Views
2
CrossRef citations to date
0
Altmetric
Articles

Visual detection of 3D mirror-symmetry and 3D rotational-symmetry

ORCID Icon &
Pages 546-563 | Received 11 Nov 2021, Accepted 10 Oct 2022, Published online: 04 Nov 2022

References

  • Artin, M. (2013). Algebra (2nd ed). Pearson Education Limited.
  • Attneave, F. (1954). Some informational aspects of visual perception. Psychological Review, 61(3), 183–193. https://doi.org/10.1037/h0054663
  • Bell, J., Gheorghiu, E., & Kingdom, F. A. A. (2009). Orientation tuning of curvature adaptation reveals both curvature-polarity-selective and non-selective mechanisms. Journal of Vision, 9(12), 1–11. https://doi.org/10.1167/9.12.3.
  • Bertamini, M., & Makin, A. D. (2014). Brain activity in response to visual symmetry. Symmetry, 6(4), 975–996. https://doi.org/10.3390/sym6040975
  • Bertamini, M., Rampone, G., Tyson-Carr, J., & Makin, A. D. (2020). The response to symmetry in extrastriate areas and its time course are modulated by selective attention. Vision Research, 177, 68–75. https://doi.org/10.1016/j.visres.2020.09.003
  • Bertamini, M., Silvanto, J., Norcia, A. M., Makin, A. D., & Wagemans, J. (2018). The neural basis of visual symmetry and its role in mid-and high-level visual processing. Annals of the New York Academy of Sciences, 1426(1), 111–126. https://doi.org/10.1111/nyas.13667
  • Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94(2), 115–147. https://doi.org/10.1037/0033-295X.94.2.115
  • Binford, T. O. (1971, December 5–17). Visual perception by computer. IEEE conference on systems and control, Miami, FL.
  • Blum, H. (1967). A transformation for extracting new descriptors of shape. In W. Wathen-Dunn (Ed.), Models for the perception of speech and visual form (pp. 362–380). MIT Press.
  • Bona, S., Herbert, A., Toneatto, C., Silvanto, J., & Cattaneo, Z. (2014). The causal role of the lateral occipital complex in visual mirror symmetry detection and grouping: An fMRI-guided TMS study. Cortex, 51, 46–55. https://doi.org/10.1016/j.cortex.2013.11.004
  • Boutsen, L., Lamberts, K., & Verfaillie, K. (1998). Recognition times of different views of 56 depth-rotated objects: A note concerning Verfaillie and Boutsen (1995). Perception & Psychophysics, 60(5), 900–907. https://doi.org/10.3758/BF03206072
  • Cattaneo, Z. (2017). The neural basis of mirror symmetry detection: A review. Journal of Cognitive Psychology, 29(3), 259–268. https://doi.org/10.1080/20445911.2016.1271804
  • Cattaneo, Z., Bona, S., Bauer, C., Silvanto, J., Herbert, A., Vecchi, T., & Merabet, L. (2014). Symmetry detection in visual impairment: Behavioral evidence and neural correlates. Symmetry, 6(2), 427–443. https://doi.org/10.3390/sym6020427
  • Cattaneo, Z., Mattavelli, G., Papagno, C., Herbert, A., & Silvanto, J. (2011). The role of the human extrastriate visual cortex in mirror symmetry discrimination: A TMS-adaptation study. Brain and Cognition, 77(1), 120–127. https://doi.org/10.1016/j.bandc.2011.04.007
  • Chan, M. W., Stevenson, A. K., Li, Y., & Pizlo, Z. (2006). Binocular shape constancy from novel views: The role of a priori constraints. Perception & Psychophysics, 68(7), 1124–1139. https://doi.org/10.3758/BF03193715
  • Chen, C. C., & Sio, L. T. (2015). 3D surface configuration modulates 2D symmetry detection. Vision Research, 107, 86–93. https://doi.org/10.1016/j.visres.2014.12.007
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
  • De Winter, J., & Wagemans, J. (2004). Contour-based object identification and segmentation: Stimuli, norms and data, and software tools. Behavior Research Methods, Instruments, & Computers, 36(4), 604–624. https://doi.org/10.3758/BF03206541
  • Dresp, B., Silvestri, C., & Motro, R. (2007). Which geometric model for the curvature of 2-D shape contours? Spatial Vision, 20(3), 219–264. https://doi.org/10.1163/156856807780421165
  • Dresp-Langley, B. (2015). 2D geometry predicts perceived visual curvature in context-free viewing. Computational Intelligence and Neuroscience, 2015, e708759. https://doi.org/10.1155/2015/708759
  • Dvoeglazova, M., Koshmanova, E., & Sawada, T. (2021). Visual sensitivity to parallel configurations of contours compared with sensitivity to other configurations. Vision Research, 188, 149–161. https://doi.org/10.1016/j.visres.2021.07.006
  • Farell, B. (2015). The perception of symmetry in depth: Effect of symmetry plane orientation. Symmetry, 7(2), 336–353. https://doi.org/10.3390/sym7020336
  • Feldman, J., & Singh, M. (2006). Bayesian estimation of the shape skeleton. Proceedings of the National Academy of Sciences, 103(47), 18014–18019. https://doi.org/10.1073/pnas.0608811103
  • Funk, C., & Liu, Y. (2016). Symmetry re-captcha. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5165–5174).
  • Funk, C., & Liu, Y. (2017). Beyond planar symmetry: Modeling human perception of reflection and rotation symmetries in the wild. In Proceedings of the IEEE International Conference on Computer Vision (pp. 793–803).
  • Gheorghiu, E., & Kingdom, F. A. A. (2009). Multiplication in curvature processing. Journal of Vision, 9(2), 23, 1–17. https://doi.org/10.1167/9.2.23.
  • Gibson, J. J. (1950). The perception of the visual world. Houghton Mifflin.
  • Gibson, J. J. (1973). On the concept of ‘formless invariants’ in visual perception. Leonardo, 6(1), 43–45. https://doi.org/10.2307/1572424
  • Gibson, J. J. (1978). The ecological approach to the visual perception of pictures. Leonardo, 11(3), 227–235. https://doi.org/10.2307/1574154
  • Gibson, J. J. (1979). The ecological approach to visual perception. Lawrence Erlbaum Associates.
  • Gibson, J. J. (2002). A theory of direct visual perception. In A. Noë & E. Thompson (Eds.), Vision and mind: Selected readings in the philosophy of perception (pp. 77–90). MIT Press. Original work published 1972.
  • Hong, W., Ma, Y., & Yu, Y. (2004). Reconstruction of 3-D deformed symmetric curves from perspective images without discrete features. In T. Pajdla & J. Matas (Eds.), Computer vision-ECCV 2004: Ser. Lecture notes in computer science, vol. 3023 (pp. 533–545). Springer-Verlag.
  • Hong, W., Yang, A. Y., Huang, K., & Ma, Y. (2004). On symmetry and multiple-view geometry: Structure, pose, and calibration from a single image. International Journal of Computer Vision, 60(3), 241–265. https://doi.org/10.1023/B:VISI.0000036837.76476.10
  • Jacobsen, T., & Höfel, L. (2003). Descriptive and evaluative judgment processes: Behavioral and electrophysiological indices of processing symmetry and aesthetics. Cognitive, Affective, & Behavioral Neuroscience, 3(4), 289–299. https://doi.org/10.3758/CABN.3.4.289
  • Jayadevan, V., Michaux, A., Delp, E., & Pizlo, Z. (2017). 3D shape recovery from real images using a symmetry prior. Electronic Imaging, 29(17), 106–115. https://doi.org/10.2352/ISSN.2470-1173.2017.17.COIMG-452
  • Jayadevan, V., Sawada, T., Delp, E., & Pizlo, Z. (2018). Perception of 3D symmetrical and nearly symmetrical shapes. Symmetry, 10(344), 1–24. http://doi.org/10.3390/sym10080344
  • Julesz, B. (1971). Foundation of cyclopean perception. University of Chicago Press.
  • Kahn, J. I., & Foster, D. H. (1986). Horizontal-vertical structure in the visual comparison of rigidly transformed patterns. Journal of Experimental Psychology: Human Perception and Performance, 12(4), 422–433. https://doi.org/10.1037/0096-1523.12.4.422
  • Kanade, T. (1981). Recovery of the three-dimensional shape of an object from a single view. Artificial Intelligence, 17(1-3), 409–460. https://doi.org/10.1016/0004-3702(81)90031-X
  • Kanade, T., & Kender, J. R. (1983). Mapping image properties into shape constraints: Skewed symmetry, affine-transformable patterns, and the shape-from-texture paradigm. In J. Beck, B. Hope, & A. Rosenfeld (Eds.), Human and machine vision (pp. 237–257). Academic Press.
  • Kanatani, K. (1988). Constraints on length and angle. Computer Vision, Graphics, and Image Processing, 41(1), 28–42. https://doi.org/10.1016/0734-189X(88)90115-6
  • Karakashevska, E., Rampone, G., Tyson-Carr, J., Makin, A. D., & Bertamini, M. (2021). Neural responses to reflection symmetry for shapes defined by binocular disparity, and for shapes perceived as regions of background. Neuropsychologia, 163, Article 108064. https://doi.org/10.1016/j.neuropsychologia.2021.108064
  • Keefe, B. D., Gouws, A. D., Sheldon, A. A., Vernon, R. J. W., Lawrence, S. J. D., McKeefry, D. J., Wade, A. R., & Morland, A. B. (2018). Emergence of symmetry selectivity in the visual areas of the human brain: fMRI responses to symmetry presented in both frontoparallel and slanted planes. Human Brain Mapping, 39(10), 3813–3826. https://doi.org/10.1002/hbm.24211
  • Kennedy, J. M., & Domander, R. (1985). Shape and contour: The points of maximum change are least useful for recognition. Perception, 14(3), 367–370. https://doi.org/10.1068/p140367
  • Klein, F. (1939). Elementary mathematics from an advanced standpoint: Geometry. (E. R. Hendrick, & C. A. Noble, Trans.). Dover. (Original work published 1925).
  • Koenderink, J. J. (1984). What does the occluding contour tell us about solid shape? Perception, 13(3), 321–330. https://doi.org/10.1068/p130321
  • Kohler, P. J., Clarke, A., Yakovleva, A., Liu, Y., & Norcia, A. M. (2016). Representation of maximally regular textures in human visual cortex. Journal of Neuroscience, 36(3), 714–729. https://doi.org/10.1523/JNEUROSCI.2962-15.2016
  • Koshmanova, E., & Sawada, T. (2019). Perceiving perpendicular and parallel contours in the frontoparallel plane. Vision Research, 154, 97–104. https://doi.org/10.1016/j.visres.2018.11.003
  • Li, Y., & Pizlo, Z. (2011). Depth cues vs. Simplicity principle in 3D shape perception. Topics in Cognitive Science, 3(4), 667–685. https://doi.org/10.1111/j.1756-8765.2011.01155.x
  • Li, Y., Pizlo, Z., & Steinman, R. M. (2009). A computational model that recovers the 3D shape of an object from a single 2D retinal representation. Vision Research, 49(9), 979–991. https://doi.org/10.1016/j.visres.2008.05.013
  • Li, Y., Sawada, T., Latecki, L. M., Steinman, R. M., & Pizlo, Z. (2012). A tutorial explaining a machine vision model that emulates human performance when it recovers natural 3D scenes from 2D images. Journal of Mathematical Psychology, 56(4), 217–231. https://doi.org/10.1016/j.jmp.2012.07.001
  • Li, Y., Sawada, T., Shi, Y., Kwon, T., & Pizlo, Z. (2011). A Bayesian model of binocular perception of 3D mirror symmetric polyhedra. Journal of Vision, 11(4), 1–20. https://doi.org/10.1167/11.4.1
  • Liu, Y., & Collins, R. T. (2001). Skewed symmetry groups. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, 1, I–I. https://doi.org/10.1109/CVPR.2001.990576.
  • Liu, Z., & Kersten, D. (2003). Three-dimensional symmetric shapes are discriminated more efficiently than asymmetric ones. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 20(7), 1331–1340. https://doi.org/10.1364/JOSAA.20.001331
  • Loffler, G. (2008). Perception of contours and shapes: Low and intermediate stage mechanisms. Vision Research, 48(20), 2106–2127. https://doi.org/10.1016/j.visres.2008.03.006
  • Mach, E. (1906/1959). The analysis of sensations and the relation of the physical to the psychical. Dover.
  • Makin, A. D., Rampone, G., & Bertamini, M. (2015). Conditions for view invariance in the neural response to visual symmetry. Psychophysiology, 52(4), 532–543. https://doi.org/10.1111/psyp.12365
  • Makin, A. D. J., Rampone, G., Pecchinenda, A., & Bertamini, M. (2013). Eletrophysiological responses to visuospatial regularity. Psychophysiology, 50(10), 1045–1055. https://doi.org/10.1111/psyp.12082.
  • Makin, A. D. J., Tyson-Carr, J., Derpsch, Y., Rampone, G., & Bertamini, M. (2021). Electrophysiological priming effects demonstrate independence and overlap of visual regularity representations in the extrastriate cortex. PLoS ONE, 16(7), e0254361. https://doi.org/10.1371/journal.pone.0254361
  • Makin, A. D. J., Wilton, M. M., Pecchinenda, A., & Bertamini, M. (2012). Symmetry perception and affective responses: A combined EEG/EMG study. Neuropsychologia, 50(14), 3250–3261. https://doi.org/10.1016/j.neuropsychologia.2012.10.003
  • Marr, D. (1977). Analysis of occluding contour. Proceedings of the Royal Society of London. Series B, Biological Sciences, 197(1129), 441–475. https://doi.org/10.1098/rspb.1977.0080
  • Martinovic, J., Jennings, B. J., Makin, A. D. J., Bertamini, M., & Angelescu, I. (2018). Symmetry perception for patterns defined by color and luminance. Journal of Vision, 18(8), 1–24. https://doi.org/10.1167/18.8.4.
  • Michaux, A., Jayadevan, V., Delp IIIE. J., & Pizlo, Z. (2016). Figure-ground organization based on three-dimensional symmetry. Journal of Electronic Imaging, 25(6), Article 061606. https://doi.org/10.1117/1.JEI.25.6.061606
  • Minkov, V., & Sawada, T. (2021). Theoretical treatment of limitations inherent in simple 3D stimuli: Triangles and the P3p problem. Vision, 5(1), 1–11. https://doi.org/10.3390/vision5010010.
  • Nonose, K., Niimi, R., & Yokosawa, K. (2016). On the three-quarter view advantage of familiar object recognition. Psychological Research, 80(6), 1030–1048. https://doi.org/10.1007/s00426-015-0702-9
  • Palmer, S. E., & Hemenway, K. (1978). Orientation and symmetry: Effects of multiple, rotational, and new symmetries. Journal of Experimental Psychology: Human Perception and Performance, 4(4), 691–702. https://doi.org/10.1037/0096-1523.4.4.691
  • Pentland, A. P. (1986). Perceptual organization and the representation of natural form. Artificial Intelligence, 28(3), 293–331. https://doi.org/10.1016/0004-3702(86)90052-4
  • Petrov, A. A., Yu, Y., & Todd, J. T. (2022). Are mirror-symmetric objects of special importance for 3D shape perception? A reply to Sawada and Pizlo (2022). Journal of Vision, 22(4), 1–5. https://doi.org/10.1167/jov.22.4.16.
  • Pizlo, Z. (1994). A theory of shape constancy based on perspective invariants. Vision Research, 34(12), 1637–1658. https://doi.org/10.1016/0042-6989(94)90123-6
  • Pizlo, Z. (2008). 3D shape: Its unique place in visual perception. MIT Press.
  • Pizlo, Z., Li, Y., Sawada, T., & Steinman, R. M. (2014). Making a machine that sees like us. Oxford University Press.
  • Pizlo, Z., & Stevenson, A. K. (1999). Shape constancy from novel views. Perception & Psychophysics, 61(7), 1299–1307. https://doi.org/10.3758/BF03206181
  • Riggs, L. A. (1973). Curvature as a feature of pattern vision. Science, 181(4104), 1070–1072. https://doi.org/10.1126/science.181.4104.1070
  • Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? A comment on theory testing. Psychological Review, 107(2), 358–367. https://doi.org/10.1037/0033-295X.107.2.358
  • Rothwell, C. A. (1995). Object recognition through invariant indexing. Oxford University Press.
  • Royer, F. L. (1981). Detection of symmetry. Journal of Experimental Psychology: Human Perception and Performance, 7(6), 1186–1210. https://doi.org/10.1037/0096-1523.7.6.1186
  • Sasaki, Y., Vanduffel, W., Knutsen, T., Tyler, C., & Tootell, R. (2005). Symmetry activates extrastriate visual cortex in human and nonhuman primates. Proceedings of the National Academy of Sciences, 102(8), 3159–3163. https://doi.org/10.1073/pnas.0500319102
  • Saunders, J. A., & Knill, D. C. (2001). Perception of 3D surface orientation from skew symmetry. Vision Research, 41(24), 3163–3183. https://doi.org/10.1016/S0042-6989(01)00187-0
  • Sawada, T. (2010). Visual detection of symmetry of 3D shapes. Journal of Vision, 10(6), 1–22. https://doi.org/10.1167/10.6.4.
  • Sawada, T. (2020). Influence of 3D centro-symmetry on a 2D retinal image. Symmetry, 12(11), 1–12. https://doi.org/10.3390/sym12111863.
  • Sawada, T., Li, Y., & Pizlo, Z. (2011). Any pair of 2D curves is consistent with a 3D symmetric interpretation. Symmetry, 3(2), 365–388. https://doi.org/10.3390/sym3020365
  • Sawada, T., Li, Y., & Pizlo, Z. (2014). Detecting 3-D mirror symmetry in a 2-D camera image for 3-D shape recovery. Proceedings of the IEEE, 102(10), 1588–1606. https://doi.org/10.1109/JPROC.2014.2344001
  • Sawada, T., Li, Y., & Pizlo, Z. (2015). Shape perception. In J. Busemeyer, J. Townsend, Z. J. Wang, & A. Eidels (Eds.), Oxford handbook of computational and mathematical psychology (pp. 255–276). Oxford University Press.
  • Sawada, T., & Pizlo, Z. (2008). Detection of skewed symmetry. Journal of Vision, 8(5), 1–18. https://doi.org/10.1167/8.5.14.
  • Sawada, T., & Pizlo, Z. (2022). Testing a formal theory of perception is not easy: Comments on Yu, Todd & Petrov (2021) and Yu, Petrov & Todd (2021). Journal of Vision, 22(4), 1–4. https://doi.org/10.1167/jov.22.4.15.
  • Sawada, T., & Zaidi, Q. (2018). Rotational symmetry in a 3D scene and its 2D image. Journal of Mathematical Psychology, 87, 108–125. https://doi.org/10.1016/j.jmp.2018.10.001
  • Scheel, A. M. (2022). Why most psychological research findings are not even wrong. Infant and Child Development, 31(1), e2295. https://doi.org/10.1002/icd.2295
  • Sedgwick, H. A. (2021). J. J. Gibson’s “ground theory of space perception”. i-Perception, 12(3), 1–55. http://doi.org/10.1177/20416695211021111.
  • Slugocki, M., Sekuler, A. B., & Bennett, P. J. (2019). Sensitivity to curvature deformations along closed contours. Journal of Vision, 19(13), 1–20. https://doi.org/10.1167/19.13.7.
  • Steiner, G. (1979). Spiegelsymmetrie der tierkörper. Naturwissenschaftliche Rundschau, 32(12), 481–485.
  • Swaddle, J. P. (1999). Visual signaling by asymmetry: A review of perceptual processes. Philosophical Transactions: Biological Sciences, 354(1388), 1383–1393. https://doi.org/10.1098/rstb.1999.0486
  • Szlyk, J. P., Rock, I., & Fisher, C. B. (1995). Level of processing in the perception of symmetrical forms viewed from different angles. Spatial Vision, 9(1), 139–150. https://doi.org/10.1163/156856895(00151
  • Treder, M. S. (2010). Behind the looking-glass: A review on human symmetry perception. Symmetry, 2(3), 1510–1543. https://doi.org/10.3390/sym2031510
  • Tyler, C. W., Baseler, H. A., Kontsevich, L. L., Likova, L. T., Wade, A. R., & Wandell, B. A. (2005). Predominantly extra-retinotopic cortical response to pattern symmetry. NeuroImage, 24(2), 306–314. https://doi.org/10.1016/j.neuroimage.2004.09.018
  • van der Helm, P. A., & Leeuwenberg, E. L. J. (1996). Goodness of visual regularities: A nontransformational approach. Psychological Review, 103(3), 429–456. https://doi.org/10.1037/0033-295X.103.3.429
  • van der Vloed, G., Csathó, A., & van der Helm, P. A. (2005). Symmetry and repetition in perspective. Acta Psychologica, 120(1), 74–92. https://doi.org/10.1016/j.actpsy.2005.03.006
  • Van Gool, L., Moons, T., & Proesmans, M. (1996). Mirror and point symmetry under perspective skewing. In Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 285–292). https://doi.org/10.1109/CVPR.1996.517087.
  • van Lier, R., & Wagemans, J. (1999). From images to objects: Global and local completions of self-occluded parts. Journal of Experimental Psychology: Human Perception and Performance, 25(6), 1721–1741. https://doi.org/10.1037/0096-1523.25.6.1721
  • Vetter, T., & Poggio, T. (1994). Symmetric 3D objects are an easy case for 2D object recognition. Spatial Vision, 8(4), 443–453. https://doi.org/10.1163/156856894X00107
  • Vetter, T., Poggio, T., & Bülthoff, H. H. (1994). The importance of symmetry and virtual views in three-dimensional object recognition. Current Biology, 4(1), 18–23. https://doi.org/10.1016/S0960-9822(00)00004-X
  • Wagemans, J. (1992). Perceptual use of nonaccidental properties. Canadian Journal of Psychology, 46(2), 236–279. https://doi.org/10.1037/h0084323
  • Wagemans, J. (1993). Skewed symmetry: A nonaccidental property used to perceive visual forms. Journal of Experimental Psychology: Human Perception and Performance, 19(2), 364–380. https://doi.org/10.1037/0096-1523.19.2.364
  • Wagemans, J. (1995). Detection of visual symmetries. Spatial Vision, 9(1), 9–32. https://doi.org/10.1163/156856895X00098
  • Wagemans, J. (1997). Characteristics and models of human symmetry detection. Trends in Cognitive Sciences, 1(9), 346–352. https://doi.org/10.1016/S1364-6613(97)01105-4
  • Wagemans, J., Van Gool, L., & D’ydewalle, G. (1991). Detection of symmetry in tachistoscopically presented dot patterns: Effects of multiple axes and skewing. Perception & Psychophysics, 50(5), 413–427. https://doi.org/10.3758/BF03205058
  • Wagemans, J., Van Gool, L., Swinnen, V., & Van Horebeek, J. (1993). Higher-order structure in regularity detection. Vision Research, 33(8), 1067–1088. https://doi.org/10.1016/0042-6989(93)90241-N
  • Watt, R. J. (1987). Scanning from coarse to fine spatial scales in the human visual system after the onset of a stimulus. Journal of the Optical Society of America. A, Optics and Image Science, 4(10), 2006–2021. https://doi.org/10.1364/JOSAA.4.002006
  • Watt, R. J., & Andrews, D. P. (1982). Contour curvature analysis: Hyperacuities in the discrimination of detailed shape. Vision Research, 22(4), 449–460. https://doi.org/10.1016/0042-6989(82)90193-6
  • Weinshall, D. (1993). Model-based invariants for 3-D vision. International Journal of Computer Vision, 10(1), 27–42. https://doi.org/10.1007/BF01440845
  • Wilson, H. R., & Richards, W. A. (1989). Mechanisms of contour curvature discrimination. Journal of the Optical Society of America. A, 6(1), 106–115. https://doi.org/10.1364/JOSAA.6.000106
  • Wright, D., Mitchell, C., Dering, B. R., & Gheorghiu, E. (2018). Luminance-polarity distribution across the symmetry axis affects the electrophysiological response to symmetry. NeuroImage, 173, 484–497. https://doi.org/10.1016/j.neuroimage.2018.02.008
  • Yang, A. Y., Huang, K., Rao, S., Hong, W., & Ma, Y. (2005). Symmetry-based 3-D reconstruction from perspective images. Computer Vision and Image Understanding, 99(2), 210–240. https://doi.org/10.1016/j.cviu.2005.01.004
  • Yu, Y., Petrov, A. A., & Todd, J. T. (2021). Bilateral symmetry has no effect on stereoscopic shape judgments. i-Perception, 12(4). Article 20416695211042644. https://doi.org/10.1177/20416695211042644
  • Yu, Y., Todd, J. T., & Petrov, A. A. (2021). Failures of stereoscopic shape constancy over changes of viewing distance and size for bilaterally symmetric polyhedra. Journal of Vision, 21(6), 1–19. https://doi.org/10.1167/jov.21.6.5.
  • Zabrodsky, H. (1990). Symmetry – A review (Tech. Rep. No. 90-16). CS Department, The Hebrew University of Jerusalem.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.