176
Views
0
CrossRef citations to date
0
Altmetric
Articles

Efficient tuning of attention to narrow and broad ranges of task-relevant feature values

ORCID Icon & ORCID Icon
Pages 63-84 | Received 23 Sep 2022, Accepted 15 Mar 2023, Published online: 28 Mar 2023

References

  • Albright, T. D., Desimone, R., & Gross, C. G. (1984). Columnar organization of directionally selective cells in visual area MT of the macaque. Journal of Neurophysiology, 51(1), 16–31. https://doi.org/10.1152/jn.1984.51.1.16
  • Alvarez, G. A., & Cavanagh, P. (2005). Independent resources for attentional tracking in the left and right visual hemifields. Psychological Science, 16(8), 637–643. https://doi.org/10.1111/j.1467-9280.2005.01587.x
  • Andersen, S. K., Hillyard, S. A., & Müller, M. M. (2008). Attention facilitates multiple stimulus features in parallel in human visual cortex. Current Biology, 18(13), 1006–1009. https://doi.org/10.1016/j.cub.2008.06.030
  • Andersen, S. K., Hillyard, S. A., & Müller, M. M. (2013). Global facilitation of attended features Is obligatory and restricts divided attention. Journal of Neuroscience, 33(46), 18200–18207. https://doi.org/10.1523/JNEUROSCI.1913-13.2013
  • Awh, E., & Pashler, H. (2000). Evidence for split attentional foci. Journal of Experimental Psychology: Human Perception and Performance, 26(2), 834–846. https://doi.org/10.1037/0096-1523.26.2.834
  • Ball, K., & Sekuler, R. (1981). Cues reduce direction uncertainty and enhance motion detection. Perception & Psychophysics, 30(2), 119–128. https://doi.org/10.3758/BF03204469
  • Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
  • Becker, S. I. (2010). The role of target-distractor relationships in guiding attention and the eyes in visual search. Journal of Experimental Psychology: General, 139(2), 247–265. https://doi.org/10.1037/a0018808
  • Becker, S. I., Folk, C. L., & Remington, R. W. (2010). The role of relational information in contingent capture. Journal of Experimental Psychology: Human Perception and Performance, 36(6), 1460–1476. https://doi.org/10.1037/a0020370
  • Becker, S. I., Folk, C. L., & Remington, R. W. (2013). Attentional capture does not depend on feature similarity, but on target-nontarget relations. Psychological Science, 24(5), 634–647. https://doi.org/10.1177/0956797612458528
  • Becker, S. I., Harris, A. M., Venini, D., & Retell, J. D. (2014). Visual search for color and shape: When is the gaze guided by feature relationships, when by feature values? Journal of Experimental Psychology: Human Perception and Performance, 40(1), 264–291. https://doi.org/10.1037/a0033489
  • Becker, S. I., Martin, A., & Hamblin-Frohman, Z. (2019). Target templates in singleton search vs. Feature-based search modes. Visual Cognition, 27(5–8), 502–517. https://doi.org/10.1080/13506285.2019.1676352
  • Bohon, K. S., Hermann, K. L., Hansen, T., & Conway, B. R. (2016). Representation of perceptual color space in macaque posterior inferior temporal cortex (The V4 complex). ENeuro, 3(4), ENEURO.0039-16.2016. https://doi.org/10.1523/ENEURO.0039-16.2016
  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436. https://doi.org/10.1163/156856897X00357
  • Brainard, D. H., Longère, P., Delahunt, P. B., Freeman, W. T., Kraft, J. M., & Xiao, B. (2006). Bayesian model of human color constancy. Journal of Vision, 6(11), 1267–1281. https://doi.org/10.1167/6.11.10
  • Bravo, M. J., & Farid, H. (2012). Task demands determine the specificity of the search template. Attention, Perception, and Psychophysics, 74(1), 124–131. https://doi.org/10.3758/s13414-011-0224-5
  • Brouwer, G. J., & Heeger, D. J. (2009). Decoding and reconstructing color from responses in human visual cortex. Journal of Neuroscience, 29(44), 13992–14003. https://doi.org/10.1523/JNEUROSCI.3577-09.2009
  • Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484–1525. https://doi.org/10.1016/j.visres.2011.04.012
  • Castiello, U., & Umiltà, C. (1990). Size of the attentional focus and efficiency of processing. Acta Psychologica, 73(3), 195–209. https://doi.org/10.1016/0001-6918(90)90022-8
  • Castiello, U., & Umiltà, C. (1992). Splitting focal attention. Journal of Experimental Psychology: Human Perception and Performance, 18(3), 837–848. https://doi.org/10.1037/0096-1523.18.3.837
  • Chapman, A. F., & Störmer, V. S. (2022). Feature similarity is non-linearly related to attentional selection: Evidence from visual search and sustained attention tasks. Journal of Vision, 22(8), 4. https://doi.org/10.1167/jov.22.8.4
  • Conway, B. R., & Tsao, D. Y. (2009). Color-tuned neurons are spatially clustered according to color preference within alert macaque posterior inferior temporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 106(42), 18034–18039. https://doi.org/10.1073/pnas.0810943106
  • Cutzu, F., & Tsotsos, J. K. (2003). The selective tuning model of attention: Psychophysical evidence for a suppressive annulus around an attended item. Vision Research, 43(2), 205–219. https://doi.org/10.1016/S0042-6989(02)00491-1
  • de Leeuw, J. R. (2015). Jspsych: A JavaScript library for creating behavioral experiments in a Web browser. Behavior Research Methods, 47(1), 1–12. https://doi.org/10.3758/s13428-014-0458-y
  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193–222. https://doi.org/10.1146/annurev.ne.18.030195.001205
  • Dori, H., & Henik, A. (2006). Indications for two attentional gradients in endogenous visual-spatial attention. Visual Cognition, 13(2), 166–201. https://doi.org/10.1080/13506280500277504
  • Downing, C. J., & Pinker, S. (1985). The spatial structure of visual attention. In M. I. Posner, & O. S. M. Marin (Eds.), Attention and performance XI. Routledge.
  • Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433–458. https://doi.org/10.1037/0033-295X.96.3.433
  • Eriksen, C. W., & St. James, J. D. (1986). Visual attention within and around the field of focal attention. Perception & Psychophysics, 40(4), 225–240. https://doi.org/10.3758/BF03211502
  • Eriksen, C. W., & Yeh, Y. Y. (1985). Allocation of attention in the visual field. Journal of Experimental Psychology: Human Perception and Performance, 11(5), 583–597. https://doi.org/10.1037/0096-1523.11.5.583
  • Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional contro. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030–1044. https://doi.org/10.1037/0096-1523.18.4.1030
  • Franconeri, S. L., Alvarez, G. A., & Cavanagh, P. (2013). Flexible cognitive resources: Competitive content maps for attention and memory. Trends in Cognitive Sciences, 17(3), 134–141. https://doi.org/10.1016/j.tics.2013.01.010
  • Gardner, J. L., Merriam, E. P., Movshon, J. A., & Heeger, D. J. (2008). Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. Journal of Neuroscience, 28(15), 3988–3999. https://doi.org/10.1523/JNEUROSCI.5476-07.2008
  • Geng, J. J., Diquattro, N. E., & Helm, J. (2017). Distractor probability changes the shape of the attentional template. Journal of Experimental Psychology: Human Perception and Performance, 43(12), 1993–2007. https://doi.org/10.1037/xhp0000430.supp
  • Geng, J. J., & Witkowski, P. (2019). Template-to-distractor distinctiveness regulates visual search efficiency. Current Opinion in Psychology, 29, 119–125. https://doi.org/10.1016/j.copsyc.2019.01.003
  • Grubert, A., & Eimer, M. (2016). All set, indeed! N2PC components reveal simultaneous attentional control settings for multiple target colors. Journal of Experimental Psychology: Human Perception and Performance, 42(8), 1215–1230. https://doi.org/10.1037/xhp0000221
  • Hamblin-Frohman, Z., & Becker, S. I. (2021). The attentional template in high and low similarity search: Optimal tuning or tuning to relations? Cognition, 212(April), 104732. https://doi.org/10.1016/j.cognition.2021.104732
  • Herrmann, K., Montaser-Kouhsari, L., Carrasco, M., & Heeger, D. J. (2010). When size matters: Attention affects performance by contrast or response gain. Nature Neuroscience, 13(12), 1554–1561. https://doi.org/10.1038/nn.2669
  • Hopf, J.-M. M., Boehler, C. N., Luck, S. J., Tsotsos, J. K., Heinze, H.-J. J., & Schoenfeld, M. A. (2006). Direct neurophysiological evidence for spatial suppression surrounding the focus of attention in vision. Proceedings of the National Academy of Sciences, 103(4), 1053–1058. https://doi.org/10.1073/pnas.0507746103
  • Hout, M. C., & Goldinger, S. D. (2014). Target templates: The precision of mental representations affects attentional guidance and decision-making in visual search. Attention, Perception, and Psychophysics, 77(1), 128–149. https://doi.org/10.3758/s13414-014-0764-6
  • Huang, L., & Pashler, H. (2007). A Boolean Map theory of visual attention. Psychological Review, 114(3), 599–631. https://doi.org/10.1037/0033-295X.114.3.599
  • Itthipuripat, S., Garcia, J. O., Rungratsameetaweemana, N., Sprague, T. C., & Serences, J. T. (2014). Changing the spatial scope of attention alters patterns of neural gain in human cortex. Journal of Neuroscience, 34(1), 112–123. https://doi.org/10.1523/JNEUROSCI.3943-13.2014
  • Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40(10–12), 1489–1506. https://doi.org/10.1016/S0042-6989(99)00163-7
  • Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1999). Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron, 22(4), 751–761. https://doi.org/10.1016/S0896-6273(00)80734-5
  • LaBerge, D., & Brown, V. (1989). Theory of attentional operations in shape identification. Psychological Review, 96(1), 101–124. https://doi.org/10.1037/0033-295X.96.1.101
  • Lafer-Sousa, R., Hermann, K. L., & Conway, B. R. (2015). Striking individual differences in color perception uncovered by “the dress” photograph. Current Biology, 25(13), R545–R546. https://doi.org/10.1016/j.cub.2015.04.053
  • Lamy, D., & Tsal, Y. (2001). On the status of location in visual attention. European Journal of Cognitive Psychology, 13(3), 305–342. https://doi.org/10.1080/09541440125789
  • Larsson, J., Solomon, S. G., & Kohn, A. (2016). fMRI adaptation revisited. Cortex, 80, 154–160. https://doi.org/10.1016/j.cortex.2015.10.026
  • Ling, S., Liu, T., & Carrasco, M. (2009). How spatial and feature-based attention affect the gain and tuning of population responses. Vision Research, 49(10), 1194–1204. https://doi.org/10.1016/j.visres.2008.05.025
  • Liu, T., Becker, M. W., & Jigo, M. (2013). Limited featured-based attention to multiple features. Vision Research, 85, 36–44. https://doi.org/10.1016/j.visres.2012.09.001
  • Liu, T., & Jigo, M. (2017). Limits in feature-based attention to multiple colors. Attention, Perception, and Psychophysics, 79(8), 2327–2337. https://doi.org/10.3758/s13414-017-1390-x
  • Liu, T., Larsson, J., & Carrasco, M. (2007). Feature-based attention modulates orientation-selective responses in human visual cortex. Neuron, 55(2), 313–323. https://doi.org/10.1016/j.neuron.2007.06.030
  • Liu, T., Stevens, S. T., & Carrasco, M. (2007). Comparing the time course and efficacy of spatial and feature-based attention. Vision Research, 47(1), 108–113. https://doi.org/10.1016/j.visres.2006.09.017
  • Maringelli, F., & Umiltà, C. (1998). The control of the attentional focus. European Journal of Cognitive Psychology, 10(3), 225–246. https://doi.org/10.1080/713752276
  • Martinez-Trujillo, J. C., & Treue, S. (2004). Feature-based attention increases the selectivity of population responses in primate visual cortex. Current Biology, 14(9), 744–751. https://doi.org/10.1016/j.cub.2004.04.028
  • Maunsell, J. H. R., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in Neurosciences, 29(6), 317–322. https://doi.org/10.1016/j.tins.2006.04.001
  • McDermott, K. C., Malkoc, G., Mulligan, J. B., & Webster, M. A. (2010). Adaptation and visual salience. Journal of Vision, 10(13), 1–32. https://doi.org/10.1167/10.13.17
  • McMains, S. A., & Somers, D. C. (2004). Multiple spotlights of attentional selection in human visual cortex. Neuron, 42(4), 677–686. https://doi.org/10.1016/S0896-6273(04)00263-6
  • Merzenich, M. M., & Brugge, J. F. (1973). Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Research, 50(2), 275–296. https://doi.org/10.1016/0006-8993(73)90731-2
  • Moerel, M., De Martino, F., & Formisano, E. (2012). Processing of natural sounds in human auditory cortex: Tonotopy, spectral tuning, and relation to voice sensitivity. Journal of Neuroscience, 32(41), 14205–14216. https://doi.org/10.1523/JNEUROSCI.1388-12.2012
  • Mountcastle, V. B. (1997). The columnar organization of the neocortex. Brain, 120(4), 701–722. https://doi.org/10.1093/brain/120.4.701
  • Mounts, J. R. W. (2000). Attentional capture by abrupt onsets and feature singletons produces inhibitory surrounds. Perception & Psychophysics, 62(7), 1485–1493. https://doi.org/10.3758/BF03212148
  • Müller, N. G., Mollenhauer, M., Rösler, A., & Kleinschmidt, A. (2005). The attentional field has a Mexican hat distribution. Vision Research, 45(9), 1129–1137. https://doi.org/10.1016/j.visres.2004.11.003
  • Navalpakkam, V., & Itti, L. (2007). Search goal tunes visual features optimally. Neuron, 53(4), 605–617. https://doi.org/10.1016/j.neuron.2007.01.018
  • Pestilli, F., & Carrasco, M. (2005). Attention enhances contrast sensitivity at cued and impairs it at uncued locations. Vision Research, 45(14), 1867–1875. https://doi.org/10.1016/j.visres.2005.01.019
  • Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25. https://doi.org/10.1080/00335558008248231
  • Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109(2), 160–174. https://doi.org/10.1037/0096-3445.109.2.160
  • Prins, N., & Kingdom, F. A. A. (2009). Palamedes: Matlab routines for analyzing psychophysical data. http://www.palamedestoolbox.org
  • Rajananda, S., Lau, H., & Odegaard, B. (2018). A random-dot kinematogram for web-based vision research. Journal of Open Research Software, 6(1), 1. https://doi.org/10.5334/jors.194
  • Reynolds, J. H., & Chelazzi, L. (2004). Attentional modulation of visual processing. Annual Review of Neuroscience, 27(1), 611–647. https://doi.org/10.1146/annurev.neuro.26.041002.131039
  • Reynolds, J. H., & Heeger, D. J. (2009). The normalization model of attention. Neuron, 61(2), 168–185. https://doi.org/10.1016/j.neuron.2009.01.002
  • Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin and Review, 16(2), 225–237. https://doi.org/10.3758/PBR.16.2.225
  • Sàenz, M., Buraĉas, G. T., & Boynton, G. M. (2003). Global feature-based attention for motion and color. Vision Research, 43(6), 629–637. https://doi.org/10.1016/S0042-6989(02)00595-3
  • Schönhammer, J. G., Grubert, A., Kerzel, D., & Becker, S. I. (2016). Attentional guidance by relative features: Behavioral and electrophysiological evidence. Psychophysiology, 53(7), 1074–1083. https://doi.org/10.1111/psyp.12645
  • Shulman, G. L., Sheehy, J. B., & Wilson, J. (1986). Gradients of spatial attention. Acta Psychologica, 61(2), 167–181. https://doi.org/10.1016/0001-6918(86)90029-6
  • Störmer, V. S., & Alvarez, G. A. (2014). Feature-based attention elicits surround suppression in feature space. Current Biology, 24(17), 1985–1988. https://doi.org/10.1016/j.cub.2014.07.030
  • Tanaka, K. (1996). Inferotemporal cortex and object vision. Annual Review of Neuroscience, 19(1), 109–139. https://doi.org/10.1146/annurev.neuro.19.1.109
  • Tanaka, K. (2003). Columns for complex visual object features in the inferotemporal cortex: Clustering of cells with similar but slightly different stimulus selectivities. Cerebral Cortex, 13(1), 90–99. https://doi.org/10.1093/cercor/13.1.90
  • Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136. https://doi.org/10.1016/0010-0285(80)90005-5
  • Wang, Y., Miller, J., & Liu, T. (2015). Suppression effects in feature-based attention. Journal of Vision, 15(5), 1–16. https://doi.org/10.1167/15.5.15.doi
  • White, A. L., & Carrasco, M. (2011). Feature-based attention involuntarily and simultaneously improves visual performance across locations. Journal of Vision, 11(6), 1–10. https://doi.org/10.1167/11.6.15
  • Williams, J. R., Brady, T. F., & Störmer, V. S. (2022). Guidance of attention by working memory Is a matter of representational guidance of attention by working memory Is a matter of representational fidelity. Journal of Experimental Psychology: Human Perception and Performance, 48(3), 202–231. https://doi.org/10.1037/xhp0000985
  • Witkowski, P. P., & Geng, J. J. (2022). Attentional priority Is determined by predicted feature distributions. Journal of Experimental Psychology: Human Perception and Performance, 48(11), 1201–1212. https://doi.org/10.1037/xhp0001041
  • Wolfe, J. M. (1994). Guided search 2.0 A revised model of visual search. Psychonomic Bulletin & Review, 1(2), 202–238. https://doi.org/10.3758/BF03200774
  • York, A. A., Sewell, D. K., & Becker, S. I. (2020). Dual target search: Attention tuned to relative features, both within and across feature dimensions. Journal of Experimental Psychology: Human Perception and Performance, 46(11), 1368–1386. https://doi.org/10.1037/xhp0000851
  • Yu, X., & Geng, J. J. (2019). The attentional template is shifted and asymmetrically sharpened by distractor context. Journal of Experimental Psychology: Human Perception and Performance, 45(3), 336–353. https://doi.org/10.1037/xhp0000609
  • Yu, X., Hanks, T. D., & Geng, J. J. (2022). Attentional guidance and match decisions rely on different template information during visual search. Psychological Science, 33(1), 105–120. https://doi.org/10.1177/09567976211032225
  • Yu, X., Johal, S. K., & Geng, J. J. (2022). Visual search guidance uses coarser template information than target-match decisions. Attention, Perception, and Psychophysics, 84(5), 1432–1445. https://doi.org/10.3758/s13414-022-02478-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.