58
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Proactive suppression is evident even if the probe-recognition assumption is not evident: complementary relationship between proactive and reactive suppression

, & ORCID Icon
Received 05 Oct 2023, Accepted 09 Apr 2024, Published online: 29 Apr 2024

References

  • Addleman, D. A., & Störmer, V. S. (2022). No evidence for proactive suppression of explicitly cued distractor features. Psychonomic Bulletin & Review, 29(4), 1338–1346. https://doi.org/10.3758/s13423-022-02071-7
  • Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–443. https://doi.org/10.1016/j.tics.2012.06.010
  • Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55(5), 485–496. https://doi.org/10.3758/BF03205306
  • Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113. https://doi.org/10.1016/j.tics.2011.12.010
  • Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Explaining the many varieties of variation in working memory. In A. R. A. Conway, C. Jarrold, M. J. Kane, A. Miyake, & J. N. Towse (Eds.), Variation in working memory (pp. 76–108). Oxford University Press.
  • Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97(4), 523–547. https://doi.org/10.1037/0033-295X.97.4.523
  • Bundesen, C., & Harms, L. (1999). Single-letter recognition as a function of exposure duration. Psychological Research, 62(4), 275–279. https://doi.org/10.1007/s004260050057
  • Chang, S., Dube, B., Golomb, J. D., & Leber, A. B. (2023). Learned spatial suppression is not always proactive. Journal of Experimental Psychology: Human Perception and Performance, 49(7), 1031–1041.
  • Chang, S., & Egeth, H. E. (2019). Enhancement and suppression flexibly guide attention. Psychological Science, 30(12), 1724–1732. https://doi.org/10.1177/0956797619878813
  • Chang, S., & Egeth, H. E. (2021). Can salient stimuli really be suppressed? Attention, Perception, & Psychophysics, 83(1), 260–269. https://doi.org/10.3758/s13414-020-02207-8
  • Chun, M. M., & Potter, M. C. (1995). A two-stage model for multiple target detection in rapid serial visual presentation. Journal of Experimental Psychology: Human Perception and Performance, 21(1), 109–127. https://doi.org/10.1037/0096-1523.21.1.109
  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193–222. https://doi.org/10.1146/annurev.ne.18.030195.001205
  • Draheim, C., Tsukahara, J. S., Martin, J. D., Mashburn, C. A., & Engle, R. W. (2021). A toolbox approach to improving the measurement of attention control. Journal of Experimental Psychology: General, 150(2), 242–275. https://doi.org/10.1037/xge0000783
  • Enns, J. T., & Di Lollo, V. (1997). Object substitution: A new form of masking in unattended visual locations. Psychological Science, 8(2), 135–139. https://doi.org/10.1111/j.1467-9280.1997.tb00696.x
  • Forstinger, M., Grüner, M., & Ansorge, U. (2022). Unseeing the white bear: Negative search criteria guide visual attention through top-down suppression. Journal of Experimental Psychology: Human Perception and Performance, 48(6), 613–638. https://doi.org/10.1037/xhp0001001
  • Gao, Y., & Theeuwes, J. (2020). Learning to suppress a distractor is not affected by working memory load. Psychonomic Bulletin & Review, 27(1), 96–104. https://doi.org/10.3758/s13423-019-01679-6
  • Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26(11), 1740–1750. https://doi.org/10.1177/0956797615597913
  • Gaspelin, N., Leonard, C. J., & Luck, S. J. (2017). Suppression of overt attentional capture by salient-but-irrelevant color singletons. Attention, Perception, & Psychophysics, 79(1), 45–62. https://doi.org/10.3758/s13414-016-1209-1
  • Gaspelin, N., & Luck, S. J. (2018). Combined electrophysiological and behavioral evidence for the suppression of salient distractors. Journal of Cognitive Neuroscience, 30(9), 1265–1280. https://doi.org/10.1162/jocn_a_01279
  • Geng, J. J. (2014). Attentional mechanisms of distractor suppression. Current Directions in Psychological Science, 23(2), 147–153. https://doi.org/10.1177/0963721414525780
  • Geng, J. J., & DiQuattro, N. E. (2010). Attentional capture by a perceptually salient non-target facilitates target processing through inhibition and rapid rejection. Journal of Vision, 10(6), 5. https://doi.org/10.1167/10.6.5
  • Geng, J. J., & Duarte, S. E. (2021). Unresolved issues in distractor suppression: Proactive and reactive mechanisms, implicit learning, and naturalistic distraction. Visual Cognition, 29(9), 608–613. https://doi.org/10.1080/13506285.2021.1928806
  • Godijn, R., & Theeuwes, J. (2002). Programming of endogenous and exogenous saccades: Evidence for a competitive integration model. Journal of Experimental Psychology: Human Perception and Performance, 28(5), 1039–1054. https://doi.org/10.1037/0096-1523.28.5.1039
  • Jiang, Y., & Chun, M. M. (2001). Asymmetric object substitution masking. Journal of Experimental Psychology: Human Perception and Performance, 27(4), 895–918. https://doi.org/10.1037/0096-1523.27.4.895
  • Joseph, J. S., Chun, M. M., & Nakayama, K. (1997). Attentional requirements in a ‘preattentive’ feature search task. Nature, 387(6635), 805–807. https://doi.org/10.1038/42940
  • Kerzel, D., & Huynh Cong, S. (2023). The PD reflects selection of nontarget locations, not distractor suppression. Journal of Cognitive Neuroscience, 35(9), 1478–1492.
  • Kerzel, D., & Renaud, O. (2023). Does attentional suppression occur at the level of perception or decision-making? Evidence from Gaspelin et al.’s (2015) probe letter task. Psychological Research, 87(4), 1243–1255. https://doi.org/10.1007/s00426-022-01734-3
  • Kim, S., & Cho, Y. S. (inpress). Feature-based attentional control for distractor suppression. Attention, Perception, & Psychophysics, 1–11.
  • Kim, S., & Beck, M. R. (2020). Impact of relative and absolute values on selective attention. Psychonomic Bulletin & Review, 27, 735–741.
  • Koenig, S., Kadel, H., Uengoer, M., Schubö, A., & Lachnit, H. (2017). Reward draws the eye, uncertainty holds the eye: Associative learning modulates distractor interference in visual search. Frontiers in Behavioral Neuroscience, 11, 128. https://doi.org/10.3389/fnbeh.2017.00128
  • Kong, S., Li, X., Wang, B., & Theeuwes, J. (2020). Proactively location-based suppression elicited by statistical learning. PLoS One, 15(6), e0233544. https://doi.org/10.1371/journal.pone.0233544
  • Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 451–468. https://doi.org/10.1037/0096-1523.21.3.451
  • Loftus, G. R., & Masson, M. E. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin & Review, 1(4), 476–490. https://doi.org/10.3758/BF03210951
  • Luck, S. J. (2014). An introduction to the event-related potential technique. MIT press.
  • Moher, J., Abrams, J., Egeth, H. E., Yantis, S., & Stuphorn, V. (2011). Trial-by-trial adjustments of top-down set modulate oculomotor capture. Psychonomic Bulletin & Review, 18(5), 897–903. https://doi.org/10.3758/s13423-011-0118-5
  • Moher, J., & Egeth, H. E. (2012). The ignoring paradox: Cueing distractor features leads first to selection, then to inhibition of to-be-ignored items. Attention, Perception, & Psychophysics, 74(8), 1590–1605. https://doi.org/10.3758/s13414-012-0358-0
  • Parasuraman, R., Richer, F., & Beatty, J. (1982). Detection and recognition: Concurrent processes in perception. Perception & Psychophysics, 31(1), 1–12. https://doi.org/10.3758/BF03206196
  • Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109(2), 160–174. https://doi.org/10.1037/0096-3445.109.2.160
  • Shibuya, H., & Bundesen, C. (1988). Visual selection from multielement displays: Measuring and modeling effects of exposure duration. Journal of Experimental Psychology: Human Perception and Performance, 14(4), 591–600. https://doi.org/10.1037/0096-1523.14.4.591
  • Theeuwes, J. (2019). Goal-driven, stimulus-driven, and history-driven selection. Current Opinion in Psychology, 29, 97–101. https://doi.org/10.1016/j.copsyc.2018.12.024
  • Theeuwes, J., Atchley, P., & Kramer, A. F. (2000). On the time course of top-down and bottomup control of visual attention. In S. Monsell, & J. Driver (Eds.), Attention and performance: XVIII. Control of cognitive performance (pp. 105–124). MIT Press.
  • Theeuwes, J., & Failing, M. (2020). Attentional selection: Top-down, bottom-up and history-based biases. Cambridge University Press.
  • Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136. https://doi.org/10.1016/0010-0285(80)90005-5
  • van Moorselaar, D., & Slagter, H. A. (2020). Inhibition in selective attention. Annals of the New York Academy of Sciences, 1464(1), 204–221. https://doi.org/10.1111/nyas.14304
  • Vatterott, D. B., & Vecera, S. P. (2012). Experience-dependent attentional tuning of distractor rejection. Psychonomic Bulletin & Review, 19(5), 871–878. https://doi.org/10.3758/s13423-012-0280-4
  • Wang, B., & Theeuwes, J. (2020). Salience determines attentional orienting in visual selection. Journal of Experimental Psychology: Human Perception and Performance, 46(10), 1051–1057. https://doi.org/10.1037/xhp0000796
  • Wolfe, J. M. (1994). Guided search 2.0 a revised model of visual search. Psychonomic Bulletin & Review, 1(2), 202–238. https://doi.org/10.3758/BF03200774
  • Won, B. Y., Kosoyan, M., & Geng, J. J. (2019). Evidence for second-order singleton suppression based on probabilistic expectations. Journal of Experimental Psychology: Human Perception and Performance, 45(1), 125–138. https://doi.org/10.1037/xhp0000594
  • Zhang, Z., Gapelin, N., & Carlisle, N. B. (2020). Probing early attention following negative and positive templates. Attention, Perception, & Psychophysics, 82(3), 1166–1175. doi:10.3758/s13414-019-01864-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.