Publication Cover
Redox Report
Communications in Free Radical Research
Volume 2, 1996 - Issue 4
13
Views
47
CrossRef citations to date
0
Altmetric
Review Articles

Synthesis and role of glutathione in protection against oxidative stress in yeast

&
Pages 223-229 | Received 14 May 1996, Accepted 17 May 1996, Published online: 13 Jul 2016

REFERENCES

  • Ruis H, Schuller C. Stress signaling in yeast. BioEssays 1995; 17: 959–965.
  • Kullick I, Storz G. Transcriptional regulators of the oxidative stress response in prokaryotes and eukaryotes. Redox Report 1994; 1: 23–29.
  • Meister A, Anderson M E. Glutathione. Ann Rev Biochem 1983; 52: 760.
  • Meister A. Glutathione metabolism and its selective modification. J Biol Chem 1988; 263: 17205–17208.
  • Mooz E D, Wigglesworth L. Evidence for the γ-glutamyl cycle in yeast. Biochem Biophys Res Commun 1976; 68: 1066–1072.
  • Jaspers C J, Gigot D, Penninckx M J. Pathways of glutathione degradation in the yeast Saccharomyces cerevisiae. Phytochemistry 1985; 24: 703–707
  • Kistler M, Summer K H, Eckardt F. Isolation of glutathione-dependent mutants of the yeast Saccharomyces cerevisiae. Mutat Res 1986; 173: 117–120.
  • Kistler M, Maier K, Eckardt-Schupp F. Genetic and biochemical analysis of glutathione-deficient mutants of Saccharomyces cerevisiae. Mutagenesis 1990; 5: 39–44.
  • Jain A, Martensson J, Einar E, Auld P A M, Meister A. Glutathione deficiency leads to mitochondrial damage in the brain. Proc Natl Acad Sci USA 1991; 88: 1913–1917.
  • Martensson J, Lai J K, Meister A. High-affinity transport of glutathione is part of a multicomponent system essential for mitochondrial function. Proc Natl Acad Sci USA 1991; 87: 7185–7189.
  • Ohtake Y, Satou A, Yabuuchi S. Isolation and characterisation of glutathione-deficient mutants in Saccharomyces cerevisiae. Agriculture, Biology and Chemistry 1990; 54: 3145–3150.
  • Ohtake Y, Yabuuchi S. Molecular cloning of the γ-glutamylcysteine synthetase gene of Saccharomyces cerevisiae. Yeast 1991; 7: 953–961.
  • Lisowsky T. A high copy number of yeast γ-glutamylcysteine synthetase suppresses a nuclear mutation affecting mitochondrial translation. Curr Genet 1993; 23: 408–413.
  • Mutoh N, Makagawa C W, Ando S, Tanabe K, Hayashi Y. Cloning and sequencing of the gene encoding the large subunit of glutathione synthetase of Schizosaccharomyces cerevisiae. Biochem Biophys Res Commun 1991; 181: 430–436.
  • Grant C M, MacIver F H, Dawes I W. Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet 1996; 29: 511–515.
  • Penninckx M J, Elskens M T. Metablism and functions of glutathione in micro-organisms. Adv Microb Physiol 1993; 34: 239–301.
  • López-Barea J, Bárcena J A, Bocanegra J A et al. Structure, mechanism, functions, and regulatory properties of glutathione reductase. In: Vina J, ed. Glutathione: Metabolism and Physiological Functions. Boca Raton, Florida: CRC Press Inc, 1990: 105–116.
  • Llobell A, Lopez-Ruiz A, Peinado J, Lopez-Barea J. Glutathione reductase directly mediates the stimulation of yeast glucose-6-phosphate dehydrogenase by GSSG. Biochem J 1988; 249: 293–297.
  • Collinson L P, Dawes I W. Isolation, characterisation and overexpression of the yeast gene, GLR1, encoding glutathione reductase. Gene 1995; 156: 123–127.
  • Perry A C F, Ni Bhriain N, Brown N L, Rouch D A. Molecular characterization of the gor gene encoding glutathione reductase from Pseudomonas aeruginosa: determinants of substrate specificity among pyridine nucleotide-disulphide oxidoreductases. Mol Microbiol 1991; 5: 163–171.
  • Grant C M, Collinson L P, Roe J-H, Dawes I W. Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation. Mol Microbiol 1996; (in press).
  • Tuggle C K, Fuchs J A. Glutathione reductase is not required for maintenance of reduced glutathione in Escherichia coli K-12. J Bacteriol 1985; 162: 448–450.
  • Alonso-Moraga A, Bocanegra A, Torres J M, Lopez-Barea J, Pueyo C. Glutathione status and sensitivity to GSH-reacting compounds of Escherichia coli strains deficient in glutathione metabolism and/or catalase activity. Mol Cell Biochem 1987; 73: 61–68.
  • Gralla E B, Kosman D J. Molecular genetics of superoxide dismutases in yeasts and related fungi. Adv Genet 1992; 30: 251–319.
  • Ruis H, Hamilton B. Regulation of yeast catalase genes. In: Scandalios J G, ed. Molecular Biology of Free Radical Scavenging Systems. Cold Spring Harbour, New York: Cold Spring Harbour Laboratory Press, 1992: 153–172.
  • Greenberg J T, Demple B. Glutathione in Escherichia coli is dispensible for resistance to H2O2 and gamma radiation. J Bacteriol 1986; 168: 1026–1029.
  • Apontoweil P, Berends W. Isolation and characterization of glutathione-deficient mutants of Escherichia coli K12. Biochem Biophys Acta 1975; 399: 10–22.
  • Davis N K, Greer S, Jones-Mortimer M C, Perham R N. Isolation and mapping of glutathione reductase-negative mutants of Escherichia coli K12. J Gen Microbiol 1982; 128: 1631–1634.
  • Izawa S, Inoue Y, Kimura A. Oxidative stress in yeast: effect of glutathione on adaption to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS Lett 1995; 368: 73–76.
  • Collinson L P, Dawes I W. Inducibility of the response of yeast cells to peroxide stress. J Gen Microbiol 1992; 138: 329–335.
  • Flattery-O'Brien J, Collinson L P, Dawes I W. Saccharomyces cerevisiae has an inducible response to menadione which differs to that of hydrogen peroxide. J Gen Microbiol 1993; 139: 501–507.
  • Jamieson D J. Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione. J Bacteriol 1992; 174: 6678–6681.
  • Lee J, Dawes I W, Roe J-H. Adaptive responses of Schizosaccharomyces pombe to hydrogen peroxide and menadione. Microbiology 1995; 141: 3127–3132.
  • Mutoh N, Nakagawa C W, Hayashi Y. Adaptive response of Schizosaccharomyces pombe to hydrogen peroxide. FEMS Microbiol Lett 1995; 132: 67–72.
  • Douglas K T. Mechanisms of action of glutathione-dependent enzymes. In: Meister A, ed. Advances in Enzymology, vol 59. New York: John Wiley & Sons Inc., 1987: 103–167.
  • Galiazzo F, Schiesser A, Rotilio G. Glutathione peroxidase in yeast. Presence of the enzyme and induction by oxidative conditions. Biochem Biophys Res Commun 1987; 147: 1200–1205.
  • Inoue Y, Kobayashi S, Kimura A. Cloning and phenotypic characterization of a gene enhancing resistance against oxidative stress in Saccharomyces cerevisiae. J Ferm Bioeng 1993; 75: 327–331.
  • Halliwell B. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 1991; 91: 3C-14S–3C-38S.
  • Griffith O W, Meister A. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem 1979; 254: 7558–7560.
  • Martensson J, Jain A, Stole E, Frayer W, Auld P A M, Meister A. Inhibition of glutathione synthesis in the newborn rat: A model for endogenously produced oxidative stress. Proc Natl Acad Sci USA 1991; 88: 9360–9364.
  • Larsson A. Heredity disorders in glutathione metabolism. In: Vina J, ed. Glutathione: Metabolism and Physiological Functions. Boca Raton, Florida: CRC Press Inc., 1990: 359–366.
  • Harshman K D, Moye-Rowley W S, Parker C S. Transcriptional activation by the SV40 AP-1 recognition element in yeast is mediated by a factor similar to AP-1 that is distinct to GCN4. Cell 1988; 53: 321–330.
  • Moye-Rowley W S, Harshman K D, Parker C S. Yeast YAP1 encodes a novel form of the jun family of transcriptional activator proteins. Genes Dev 1989; 3: 283–292.
  • Schnell N, Entian K-D. Identification and characterization of a Saccharomyces cerevisiae gene (PAR1) conferring resistance to iron chelators. J Biochem 1991; 200: 487–493.
  • Schnell N, Krems B, Entian K-D. The PAR1 (YAP1/SNQ3) gene of Saccharomyces cerevisiae, a c-jun homologue, is involved in oxygen metabolism. Curr Genet 1992; 21: 269–273.
  • Grey M, Brendel M. Overexpression of the SNQ3/YAP1 gene confers hyper-resistance to nitrosoguanidine in Saccharomyces cerevisiae via a glutathione independent mechanism. Curr Genet 1994; 25: 469–471.
  • Hertle K, Haase E, Brendel M. The SNQ3 gene of Saccharomyces cerevisiae confers hyper-resistance to several functionally unrelated chemicals. Curr Genet 1991; 19: 429–433.
  • Wu A, Wemmies J A, Edgington N P, Goebl M, Guevaras J L, Moye-Rowley W S. Yeast bzip proteins mediate pleiotropic drug and metal resistance. J Biol Chem 1993; 268: 18850–18858.
  • Wu A, Moye-Rowley W S. GSH1, which encodes γ-glutamylcysteine synthetase, is a target gene for YAP-1 transcriptional regulation. Mol Cell Biol 1994; 14: 5832–5839.
  • Kuge S, Jones N. YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO 1994; 13: 655–664.
  • Wemmie J A, Szczypka M S, Thiele D J, Moye-Rowley W S. Cadmium tolerance mediated by the yeast AP-1 protein requires the presence of an ATP-binding cassette transporterencoding gene, YCF1. J Biol Chem 1994; 269: 32592–32597
  • Li Z-S, Szczypka M, Lu Y-P, Thiele D J, Rea P A. The yeast cadmium factor protein (YCF1)is a vacuolar glutathione S-conjugate pump. J Biol Chem 1996; 271: 6509–6517
  • Stephen D W S, Rivers S L, Jamieson D J. The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Sacchtaromyces cerevisiae. Mol Microbiol 1995; 16: 415–423.
  • Toda T, Shimanuki M, Yanagida M. Fission yeast genes that confer resistance to staurosporine encode an AP-1-like transcription factor and a protein kinase related to the mammalian ERK1/MAP2 and budding yeast FUS3 and KSS1 kinases. Genes Dev 1991; 5: 60–73.
  • Amstad P A, Krupitza G, Cerutti P A. Mechanism of c-fos induction by active oxygen. Cancer Res 1992; 52: 3952–3960.
  • Devary Y, Gottlieb R A, Lau L F, Karin M. Rapid and preferential activation of the c-jun gene during the mammalian UV response. Mol Cell Biol 1991; 11: 2804–2811.
  • Nose K, Shibanuma M, Kikuchi K, Kageyama H, Sakiyama S, Kuroki T. Transcriptional activation of early-response genes by hydrogen peroxide in a mouse osteoblastic cell line. Eur J Biochem 1991; 201: 99–106.
  • Bergelson S, Pinkus R, Daniel V. Intracellular glutathione levels regulate Fos/jun induction and activation of glutathione S-transferase. Cancer Res 1995; 54: 36–40.
  • Alam J, Zhining D. Distal AP-1 binding sites mediate basal level enhancer and TPA induction of the mouse heme oxygenase-1 gene. J Biol Chem 1992; 267: 21894–21900.
  • Angel P, Karin M. The role of jun, Fos and the AP-1 complex in cell proliferation and transformation. Biochim Biophys Acta 1991; 1072: 129–157.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.