Publication Cover
Redox Report
Communications in Free Radical Research
Volume 22, 2017 - Issue 4
992
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Vancomycin-sensitized photooxidation in the presence of the natural pigment vitamin B2: Interaction with excited states and photogenerated ROS

, , , &

References

  • Murgida DH, Aramendia PF, Balsells RE. Photosensitized oxidation of oxopurines by Rose Bengal. Photochem. Photobiol. 1998;68:467–473. doi: 10.1111/j.1751-1097.1998.tb02501.x
  • Díaz M, Luiz M, Bertolotti S, Miskoski S, García NA. Scavenging of photogenerated singlet molecular oxygen and superoxide radical anion by sulpha drugs. Kinetics and mechanism. J. Chem. 2004;82:1752–1759.
  • García NA, Criado SN, Massad WA. Riboflavin as a visible-light-sensitiser in aerobic photodegradation of ophthalmic and sympathomimetic drugs. In: Silva E, Edwards AM, (eds.) Comprehensive series in photosciences. Flavins: photochemistry and photobiology. Cambridge: The Royal Society of Chemistry; 2006. p. 61–82.
  • Trovó AG, Santos Melo SA, Nogueira RFP. Photodegradation of the pharmaceuticals amoxicillin, bezafibrate and paracetamol by the photo-Fenton process—application to sewage treatment plant effluent. J. Photochem. Photobiol. A 2008;198:215–220. doi: 10.1016/j.jphotochem.2008.03.011
  • Jung YJ, Kim WG, Yoon Y, Kang JW, Hong YM, Kim HW. Removal of amoxicillin by UV and UV/H2O2 processes. Sci. Total Environ. 2012;420:160–167. doi: 10.1016/j.scitotenv.2011.12.011
  • Yang L, Yu LE, Ray MB. Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Wat. Res. 2008;42:3480–3488. doi: 10.1016/j.watres.2008.04.023
  • Posadaz A, Sánchez E, Gutiérrez MI, Calderón M, Bertolotti S, Biasutti MA, et al. Riboflavin and Rose Bengal sensitized photooxidation of sulphathiazole and succinylsuphathiazole. Kinetic study and microbiological implications. Dyes Pigments 2000;45:219–228. doi: 10.1016/S0143-7208(00)00010-3
  • Castillo C, Criado S, Diaz M, García NA. Riboflavin as a sensitiser in the photodegradation of tetracyclines. Kinetics, mechanism and microbiological implications. Dyes Pigments 2007;72:178–184. doi: 10.1016/j.dyepig.2005.08.025
  • Reynoso E, Nesci A, Allegretti P, Criado S, Biasutti MA. Kinetic and mechanistic aspects of sensitized photodegradation of β-lactam antibiotics: microbiological implications. Red. Rep. 2012;17:275–283. doi: 10.1179/1351000212Y.0000000032
  • Reynoso E, Spesia MB, García NA, Biasutti MA, Criado S. Riboflavin-sensitized photooxidation of ceftriaxone and cefotaxime. Kinetic study and effect on Staphylococcus aureus. J. Photochem. Photobiol. B 2015;142:35–42. doi: 10.1016/j.jphotobiol.2014.11.004
  • Momzikoff A, Santus R, Giraud M. A study of the photosensitizing properties of seawater. Marine Chem. 1983;12:1–14. doi: 10.1016/0304-4203(83)90024-5
  • Chacon JN, McLearie J, Sinclair RS. Singlet oxygen yields and radical contributions in the dye-sensitised photo-oxidation in methanol of esters of polyunsatured fatty acids (oleic, linoleic, linolenic and arachidonic). Photochem. Photobiol. 1988;47:647–656. doi: 10.1111/j.1751-1097.1988.tb02760.x
  • Edwards AM, Silva E. Effect of visible light on selected enzymes vitamins and amino acids. J. Photochem. Photobiol. B 2001;63:126–131. doi: 10.1016/S1011-1344(01)00209-3
  • Neckers DC. Rose Bengal. Review. J. Photochem. Photobiol. A 1989;47:1–29. doi: 10.1016/1010-6030(89)85002-6
  • Heelis PF. The photophysical and photochemical properties of flavins (isoalloxazines). Chem. Soc. Rev. 1982;11:15–39. doi: 10.1039/cs9821100015
  • Heelis PF. The photochemistry of flavinas. In: Müller F, (ed.) Chemistry and biochemistry of flavoenzymes, Boca Ratón, FL: CRC Press; 1991.
  • Halling-Sorensen B, Nielsen SN, Lanzky PF, Ingerslev F, Lutzhft HCH, Jorgensen SE. Occurrence, fate and effects of pharmaceutical substances in the environment – a review. Chemosphere 1998;36:357–393. doi: 10.1016/S0045-6535(97)00354-8
  • Kümmerer K. Antibiotics in the aquatic environment – a review – part I. Chemosphere 2009;75:417–434. doi: 10.1016/j.chemosphere.2008.11.086
  • Kümmerer K. Antibiotics in the aquatic environment – a review – part II. Chemosphere 2009;75:435–441. doi: 10.1016/j.chemosphere.2008.12.006
  • Hirsch R, Ternes T, Haberer K, Kratz KL. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 1999;225:109–118. doi: 10.1016/S0048-9697(98)00337-4
  • Zwiener C, Gremm TJ, Frimmel FH. Pharmaceuticals in the environment: sources fate, effects, and risks. Weinheim, Germany: Springer; 2004.
  • Andreozzi R, Canterino M, Marotta R, Paxeus N. Antibiotic removal from waste waters: the ozonation of amoxicillin. J. Hazard. Mater. 2005;122:243–250. doi: 10.1016/j.jhazmat.2005.03.004
  • Gartiser S, Urich E, Alexy R, Kümmerer K. Ultimate biodegradation and elimination of antibiotics in inherent tests. Chemosphere 2007;67:604–613. doi: 10.1016/j.chemosphere.2006.08.038
  • Gilliver MA, Bennett M, Begon M, Hazel SM, Hart CA. Enterobacteria: antibiotic resistance found in wild rodents. Nature 1999;401:233–234. doi: 10.1038/45724
  • Gould IM. A review of the role of antibiotic policies in the control of antibiotic resistance. J. Antimicrob. Chemother. 1999;43:459–465. doi: 10.1093/jac/43.4.459
  • Johnson JLH, Yalkowsky SH. Reformulation of a new vancomycin analog: an example of the importance of buffer species and strength. AAPS Pharm. Sci. Technol. 2006;7:E1–E5.
  • Wolter F, Schoof S, Süssmuth RD. Synopsis of structural, biosynthetic, and chemical aspects of glycopeptide antibiotics. Top. Curr. Chem. 2007;267:143–185. doi: 10.1007/128_041
  • Sinha B, Fraunholz M. Staphylococcus aureus host cell invasion and post-invasion events. Int. J. Med. Microbiol. 2010;300:170–175. doi: 10.1016/j.ijmm.2009.08.019
  • Mensa J, Gatell JM, Azanza JR, Dominguez-Gil A, García JE, Jiménez de anta MT, et al. Guía terapéutica antimicrobiana. 18th ed. Barcelona: Elsevier Masson; 2008.
  • West R. (Ed). Handbook of chemitry and physics. Boca Ratón, FL: CRC; 1981.
  • Miskoski S, García NA. Dark and photoinduced interactions between riboflavin and indole auxins. Collect. Czechoslovak Chem. Commun. 1991;56:1838–1849. doi: 10.1135/cccc19911838
  • Bertolotti SG, Arguello GA, García NA. Effect of the peptide bond on the singlet molecular oxygen mediated photooxidation of tyrosine and tryptophan dipeptides. A kinetic study. J. Photochem. Photobiol. B 1991;10:57–70. doi: 10.1016/1011-1344(91)80212-Z
  • Foote S, Ching TY. Chemistry of singlet oxygen XXI. Kinetics of bilirubin photooxygenation. J. Am. Chem. Soc. 1975;97:6209–6214. doi: 10.1021/ja00854a045
  • Wilkinson F, Helman WP, Ross AB. Rate constant for the decay and reaction of the lowest electronically excited state of molecular oxygen in solution. An extended and revised compilation. J. Phys. Chem. Ref. Data 1995;24:663–1021. doi: 10.1063/1.555965
  • Scully FE, Hoigné J. Rate constant for the reaction of singlet oxygen with phenols and other compound in water. Chemosphere 1987;16:694–699. doi: 10.1016/0045-6535(87)90004-X
  • Díaz M, Luiz M, Alegretti P, Furlong J, Amat-Guerri F, Massad W, et al. Visible-light-mediated photodegradation of 17β-estardiol: kinetics, mechanism and photoproducts. J. Photochem. Photobiol. A 2009;202:221–227. doi: 10.1016/j.jphotochem.2008.12.008
  • Moore WM, McLearie J, McDaniels JC, Hen JA. The photochemistry of Riboflavin-VI. The photophysical properties of isoalloxacine. Photochem. Photobiol. 1977;25:505–512. doi: 10.1111/j.1751-1097.1977.tb09120.x
  • Orellana B, Rufs AM, Encinas MV, Previtali CM, Bertolotti S. The photoinitiation mechanism of vinyl polymerization by Riboflavin/triethanolamine in aqueous medium. Macromolecules 1999;32:6570–6573. doi: 10.1021/ma990946x
  • Schreiner S, Steiner U, Kramer HEA. Determination of the pK values of the Lumiflavin triplet state by flash photolysis. Photochem. Photobiol. 1975;21:81–84. doi: 10.1111/j.1751-1097.1975.tb06632.x
  • Encinas MV, Rufs AM, Bertolotti S, Previtali CM. Free radical polymerization photoinitiated by riboflavin/amines. Effect of the amine structure. Macromolecules 2001;34:2845–2847. doi: 10.1021/ma001649r
  • Criado S, Bertolotti S, García NA. Kinetic aspect of the rose Bengal-sensitized photo-oxygenation of tryptophan alkyl esters. J. Photochem. Photobiol. B 1996;34:79–86. doi: 10.1016/1011-1344(95)07274-8
  • Schweitzer C, Scmidt R. Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev. 2003;103:1685–1757. doi: 10.1021/cr010371d
  • Nonell SL, Moncayo F, Trull F, Amat-Guerri F, Lissi E, Soltermann AT. Solvent influence on the kinetics of the photodynamic degradation of Trolox, a water-soluble model compound for vitamin E. J. Photochem. Photobiol. B 1995;29:157–162. doi: 10.1016/1011-1344(95)07137-Q
  • Krishna CM, Uppuluri S, Riesz P, Zigler JS, Balasubramanian D. A study of the photodynamic efficiencies of some eye lens constituents. Photochem. Photobiol. 1991;54:51–58. doi: 10.1111/j.1751-1097.1991.tb01984.x
  • Baxer RM, Carey JH. Evidence for photochemical generation of superoxide ion in humic water. Nature 1983;306:575–576. doi: 10.1038/306575a0
  • Zang PG, Misra HP. Superoxide radicals generated during the autooxidation of 1-methyl-4-phenyl-2,3-dihydropyridinium perchlorate. J. Biol. Chem. 1992;267:17547–17552.
  • Iuliano L, Pratico D, Ghiselli A, Bonavita MS, Violi F. Reaction of dipyridamole with hydroxyl radical. Lipids 1992;27:349–353. doi: 10.1007/BF02536149
  • Silva E, Ugarte R, Andrade A, Edwards AM. Riboflavin-sensitised photoprocesses of tryptophan. J. Photochem. Photobiol. B: Biol. 1994;23:43–48. doi: 10.1016/1011-1344(93)06984-B
  • Criado SN, García NA. Vitamin B2-sensitised photooxidation of the ophthalmic drugs Timolol and pindolol. Kinetics and mechanism. Red. Rep. 2004;9:291–297. doi: 10.1179/135100004225006047
  • Haggi E, Bertolotti S, Miskoski S, Amat-Guerri F, García NA. Environmental photodegradation of pyrimidine fungicides. Kinetics of the visible-light-promoted interactions between riboflavin and 2-amino-4-hydroxy-6-methylpyrimidine. Can. J. Chem. 2002;80:62–67. doi: 10.1139/v01-192
  • Bertolotti S, Previtali CM, Rufs AM, Encinas MV. Riboflavin/triethanolamine as photoinitiator system of vinyl polymerization. A mechanistic study by laser flash photolysis. Macromolecules 1999;32:2920–2924. doi: 10.1021/ma981246f
  • Massad WA, Bertolotti SG, García NA. Visible-light-induced degradation of medicament. Kinetic and mechanism of the Vitamin B2-sensitized photooxidation of isoproterenol. Photochem. Photobiol. 2004;79:428–433. doi: 10.1562/RA-028R.1
  • Pajares A, Bregliani M, Montaña P, Criado S, Massad W, Gianotti J, et al. Visible-light promoted photoprocesses on aqueous gallic acid in the presence of riboflavin. Kinetics and mechanism. J. Photochem. Photobiol. A 2010;209:89–94. doi: 10.1016/j.jphotochem.2009.10.011
  • Koizumi M, Kato S, Mataga N, Matsuura T, Isui I. Photosensitized reactions. Kyoto: Kagakudogin; 1978.
  • Calvert J, Pitts J Jr. Photochemistry. New York: John Wiley & Sons; 1966.
  • Murov SL. Handbook of photochemistry. New York: M. Decker; 1973.
  • Wilkinson F, Helman WP, Ross AB. Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution. J. Phys. Chem. Ref. Data 1993;22:133–262. doi: 10.1063/1.555934
  • Lambert CR, Kochevar IE. Does Rose Bengal generate superoxide anion? J. Am. Chem. Soc. 1996;118:3297–3298. doi: 10.1021/ja9600800
  • García NA. New trends in photobiology: singlet-molecular-oxygen-mediated photodegradation of aquatic phenolic pollutants. A kinetic and mechanistic overview. J. Photochem. Photobiol. B 1994;22:185–196. doi: 10.1016/1011-1344(93)06932-S
  • Soltermann AT, Luiz M, Biasutti MA, Carrascoso M, Amat-Guerri F, García NA. Monosubtituted naphthalenes as quenchers and generators of singlet molecular oxygen. J. Photochem. Photobiol. A 1999;129:25–32. doi: 10.1016/S1010-6030(99)00172-0
  • Takács-Novák K, Noszál B, Tokes-Kovesdi M, Szasz G. Acid base properties and proton-speciation of vancomycin. Int. J. Pharm. 1993;89:261–263. doi: 10.1016/0378-5173(93)90252-B
  • Martins SAR, Castro Combs J, Noguera G, Camacho W, Wittmann P, Walther R, et al. Antimicrobial efficacy of riboflavin/UVAcombination (365 nm) in vitro for bacterial and fungal isolates: a potential new treatment for infectious keratitis, invest. Ophthalmol. Visual Sci. 2008;49:3402–3408. doi: 10.1167/iovs.07-1592
  • Makdoumi K, Mortensen J, Sorkhabi O, Malmvall B, Crafoord S. UVA riboflavin photochemical therapy of bacterial keratitis: a pilot study. Graefes Arch. Clin. Exp. Ophthalmol. 2012;250:95–102. doi: 10.1007/s00417-011-1754-1
  • Wammer KH, Korte AR, Lundeen RA, Sundberg JE, McNeill K, Arnold WA. Direct photochemistry of three fluoroquinolone antibacterials: Norfloxacin, ofloxacin, and enrofloxacin. Water Res. 2013;47:439–448. doi: 10.1016/j.watres.2012.10.025
  • Rozas O, Contreras D, Mondaca MA, Pérez-Moya M, Mansilla HD. Experimental design of Fenton and photo-Fenton reactions for the treatment of ampicillin solutions. J. Hazard. Mater. 2010;177:1025–1030. doi: 10.1016/j.jhazmat.2010.01.023

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.