Publication Cover
Redox Report
Communications in Free Radical Research
Volume 23, 2018 - Issue 1
3,687
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Aerobic training reduces oxidative stress in skeletal muscle of rats exposed to air pollution and supplemented with chromium picolinate

ORCID Icon, , , ORCID Icon & ORCID Icon

References

  • IARC (International Agency for Research on Cancer). IARC: Outdoor air pollution a leading environmental cause of cancer deaths. IARC Scientific Publications. World Health Organization. 2013; 161.
  • WHO. Air quality guidelines: Global update 2005. World Health Organization. 2006.
  • Aguilera I, Dratva J, Caviezel S, et al. Particulate matter and subclinical atherosclerosis: associations between different particle sizes and sources with carotid intima-media thickness in the SAPALDIA study. Environ Health Perspect. 2016;124:1700–1706. doi: 10.1289/EHP161
  • Silva RA, Adelman Z, Fry MM, et al. The impact of individual anthropogenic emissions sectors on the global burden of human mortality due to ambient air pollution. Environ Health Perspect. 2016;124:1776–1784. doi: 10.1289/EHP177
  • Lelieveld J, Evans JS, Fnais M, et al. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 2015;525:367–371. doi: 10.1038/nature15371
  • Fraunberger EA, Scola G, Laliberté VL, et al. Redox modulations, antioxidants, and neuropsychiatric disorders. Oxid Med Cell Longev. 2016. doi:10.1155/2016/4729192.
  • Pope CA, Bhatnagar A, McCracken J, et al. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circ Res. 2016;11:1204–1214. doi: 10.1161/CIRCRESAHA.116.309279
  • Blair SN. Physical inactivity: The biggest public health problem of the 21st century. Br J Sports Med. 2009;43:1–2.
  • Kohl HW, Craig CL, Lambert EV, et al. The pandemic of physical inactivity: global action for public health. Lancet. 2012;380:294–305. doi: 10.1016/S0140-6736(12)60898-8
  • Finucane MM, Stevens GA, Cowan MJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet. 2011;377:557–567. doi: 10.1016/S0140-6736(10)62037-5
  • Lauzé M, Daneault JF, Duval C. The effects of physical activity in Parkinson’s disease: A review. J Parkinson’s Dis. 2016;6:685–698. doi: 10.3233/JPD-160790
  • Stubbs B, Koyanagi A, Hallgren M, et al. Physical activity and anxiety: A perspective from the world health survey. J Affect Disord. 2016;208:545–552. doi: 10.1016/j.jad.2016.10.028
  • Giles LV, Koehle MS. The health effects of exercising in air pollution. Sports Med. 2014;44:223–249. doi: 10.1007/s40279-013-0108-z
  • Matt F, Cole-Hunter T, Donaire-Gonzalez D, et al. Acute respiratory response to traffic-related air pollution during physical activity performance. Environ Int. 2016;97:45–55. doi: 10.1016/j.envint.2016.10.011
  • Powers SK, Duarte J, Kavazis NA, et al. Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Exp Physiol. 2010;95:1–9. doi: 10.1113/expphysiol.2009.050526
  • Buresh R, Berg K. A tutorial on oxidative stress and redox signaling with application to exercise and sedentariness. Sports Med Open. 2015;1:3–12. doi: 10.1186/s40798-014-0003-7
  • Al-Rasheed NM, Attia HA, Mohamed RA, et al. Preventive effects of selenium yeast, chromium picolinate, zinc sulfate and their combination on oxidative stress, inflammation, impaired angiogenesis and atherogenesis in myocardial infarction in rats. Journal of Pharmacy and Pharmaceutical Sciences. 2013;16:848–867. doi: 10.18433/J34C7N
  • Sundaram B, Singhal K, Sandhir R. Anti-atherogenic effect of chromium picolinate in streptozotocin-induced experimental diabetes. J Diabetes. 2013a;5:43–50. doi: 10.1111/j.1753-0407.2012.00211.x
  • Sundaram B, Aggarwal A, Sandhir R. Chromium picolinate attenuates hyperglycemia-induced oxidative stress in streptozotocin-induced diabetic rats. J Trace Elem Med Biol. 2013b;27:117–121. doi: 10.1016/j.jtemb.2012.09.002
  • Tezuka M, Ishii S, Okada S. Chromium (III) decreases carbon tetrachloride-originated trichloromethyl radical in mice. J Inorg Biochem. 1991;44:261–265. doi: 10.1016/0162-0134(91)84031-4
  • Refaie FM, Esmat AY, Mohamed AF, et al. Effect of chromium supplementation on the diabetes induced-oxidative stress in liver and brain of adult rats. Biometals. 2009;22:1075–1087. doi: 10.1007/s10534-009-9258-8
  • Zhou J, Xu H, Huang K. Organoselenium small molecules and chromium (III) complexes for intervention in chronic low-grade inflammation and type 2 diabetes. Curr Top Med Chem. 2016;16:823–834. doi: 10.2174/1568026615666150827094815
  • Tong H. Dietary and pharmacological intervention to mitigate the cardiopulmonary effects of air pollution toxicity. Biochem Biophys Acta. 2016;1860:2891–2898. doi: 10.1016/j.bbagen.2016.05.014
  • Andersen ZJ, de Nazelle A, Mendez MA, et al. A study of the combined effects of physical activity and air pollution on mortality in elderly urban residents: The Danish diet, cancer, and health cohort. Environ Health Perspect. 2015;123:557–563. doi: 10.1289/ehp.1408698
  • Medeiros N, Rivero D, Kasahara DI, et al. Acute pulmonary and hematological effects of two types of particle surrogates are influenced by their elemental composition. Environ Research. 2004;95:62–70. doi: 10.1016/j.envres.2003.07.007
  • OECD. Guideline for the testing of chemicals. Original Test Guideline No 413, Environment Directorate, OECD. 2009.
  • Southam DS, Dolovich M, O’Byrne PM, et al. Distribution of intranasal instillations in mice: effects of volume, time, body position, and anesthesia. Am J Physiol Lung Cell Mol Physiol. 2002;282:833–839. doi: 10.1152/ajplung.00173.2001
  • Marton O, Koltai E, Takeda M, et al. The rate of training response to aerobic exercise affects brain function of rats. Neurochem Int. 2016;99:16–23. doi: 10.1016/j.neuint.2016.05.012
  • Ferreira JCB, Rolim NPL, Bartholomeu JB, et al. Maximal lactate steady state in running mice: effect of exercise training. Clin Exp Pharmacol Physiol. 2007;34:760–765. doi: 10.1111/j.1440-1681.2007.04635.x
  • Nunes RB, Alves JP, Kessler LP, et al. Aerobic exercise improves the inflammatory profile correlated with cardiac remodeling and function in chronic heart failure rats. Clinics (Sao Paulo). 2013;68:876–882. doi: 10.6061/clinics/2013(06)24
  • Schleicher E, Wieland OH. Evaluation of Bradford method for protein determination in body-fluids. J Clin Chem Clin Biochem. 1978;16:533–534.
  • Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47:469–474. doi: 10.1111/j.1432-1033.1974.tb03714.x
  • Aebi H. Catalase invitro. Methods Enzymol 1984;105:121–126. doi: 10.1016/S0076-6879(84)05016-3
  • Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990;186:407–421. doi: 10.1016/0076-6879(90)86134-H
  • Cigarroa I, Lalanza JF, Caimari A, et al. Treadmill intervention attenuates the cafeteria diet-induced impairment of stress-coping strategies in young adult female rats. PLoS One. 2016. doi: 10.1371/journal.pone.0153687
  • Powers SK, Talbert EE, Adhihetty PJ. Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. J Physiol-London. 2011;589:2129–2138. doi: 10.1113/jphysiol.2010.201327
  • Radak Z, Zhao Z, Koltai E, et al. Oxygen consumption and usage during physical exercise: The balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal. 2013;18:1208–1246. doi: 10.1089/ars.2011.4498
  • Steinbacher P, Eckl P. Impact of oxidative stress on exercising skeletal muscle. Biomolecules. 2015;5:356–377. doi: 10.3390/biom5020356
  • Damiani RM, Piva MO, Petry MR, et al. Is cardiac tissue more susceptible than lung to oxidative effects induced by chronic nasotropic instillation of residual oil fly ash (ROFA)? Toxicol Mech Methods. 2012;22:533–539. doi: 10.3109/15376516.2012.692109
  • Gurgueira SA, Lawrence J, Coull B, et al. Rapid increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ Health Perspect. 2002;110:749–755. doi: 10.1289/ehp.02110749
  • Carvalho GM, Nagato LK, Fagundes SS, et al. Time course of pulmonary burden in mice exposed to residual oil fly ash. Front Physiol. 2014. doi:10.3389/fphys.2014.00366.
  • Magnani ND, Marchini T, Tasat DR, et al. Lung oxidative metabolism after exposure to ambient particles. Biochem Biophys Res Commun. 2011;412:667–672. doi: 10.1016/j.bbrc.2011.08.021
  • Marchini T, Magnani ND, Paz ML, et al. Time course of systemic oxidative stress and inflammatory response induced by an acute exposure to residual oil fly ash. Toxicol Appl Pharmacol. 2014;274:274–282. doi: 10.1016/j.taap.2013.11.013
  • Farraj AK, Haykal-Coates N, Winsett DW, et al. Increased non-conducted p-wave arrhythmias after a single oil fly ash inhalation exposure in hypertensive rats. Environ Health Perspect. 2009;117:709–715. doi: 10.1289/ehp.0800129
  • Marchini T, Wolf D, Michel NA, et al. Acute exposure to air pollution particulate matter aggravates experimental myocardial infarction in mice by potentiating cytokine secretion from lung macrophages. Basic Res Cardiol. 2016. doi:10.1007/s00395-016-0562-5.
  • Meng X, Zhang Y, Yang KQ, et al. Potential harmful effects of PM2.5 on occurrence and progression of acute coronary syndrome: epidemiology, mechanisms, and prevention measures. Int J Environ Res Public Health. 2016. doi:10.3390/ijerph13080748.
  • Powers SK, Knuak Z, Ji LL. Exercise-induced oxidative stress: past, present and future. J Physiol. 2016;594:5081–5092. doi: 10.1113/JP270646
  • Boccatonda A, Tripaldi R, Davì G, et al. Oxidative stress modulation through habitual physical activity. Curr Pharm Des. 2016;22:3648–3680. doi: 10.2174/1381612822666160413123806
  • Perkins A, Nelson KJ, Parsonage D, et al. Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci. 2015;40:435–445. doi: 10.1016/j.tibs.2015.05.001
  • Emerit J, Edeas M, Bricaire F. Neurodegenerative diseases and oxidative stress. Biomed Pharmacother. 2004;58:39–46. doi: 10.1016/j.biopha.2003.11.004
  • Marmett B, Nunes RB. Effects of chromium picolinate supplementation on control of metabolic variables: A systematic review. J Food Nutr Research. 2016;4:633–639.
  • Cefalu WT, Rood J, Pinsonat P, et al. Characterization of the metabolic and physiologic response to chromium supplementation in subjects with type 2 diabetes mellitus. Metabolism. 2010;59:755–762. doi: 10.1016/j.metabol.2009.09.023
  • Wang ZQ, Qin J, Martin J, et al. Phenotype of subjects with type 2 diabetes mellitus may determine clinical response to chromium supplementation. Metabolism. 2007;56:1652–1655. doi: 10.1016/j.metabol.2007.07.007
  • Paschalis V, Theodorou AA, Kyparos A, et al. Low vitamin C values are linked with decreased physical performance and increased oxidative stress: reversal by vitamin C supplementation. Eur J Nutr. 2016;55:45–53. doi: 10.1007/s00394-014-0821-x
  • Paschalis V, Theodorou AA, Margaritelis NV, et al. N-acetylcysteine supplementation increases exercise performance and reduces oxidative stress only in individuals with low levels of glutathione. Free Radic Biol Med. 2018;115:288–297. doi: 10.1016/j.freeradbiomed.2017.12.007