Publication Cover
Redox Report
Communications in Free Radical Research
Volume 26, 2021 - Issue 1
1,732
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Can thiol-based redox systems be utilized as parts for synthetic biology applications?

&

References

  • Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radic Biol Med. 2014;66:75–87.
  • Miller CG, Holmgren A, Arner ESJ, et al. NADPH-dependent and -independent disulfide reductase systems. Free Radic Biol Med. 2018;127:248–261.
  • Gallogly MM, Mieyal JJ. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr Opin Pharmacol. 2007;7(4):381–391.
  • Veal EA, Underwood ZE, Tomalin LE, et al. Hyperoxidation of peroxiredoxins: gain or loss of function? Antioxid Redox Signal. 2018;28(7):574–590.
  • Berndt C, Lillig CH, Holmgren A. Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. Am J Physiol Heart Circ Physiol. 2007;292(3):H1227–H1236.
  • Toledano MB, Kumar C, Le Moan N, et al. The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis. FEBS Lett. 2007;581(19):3598–3607.
  • Vlamis-Gardikas A. The multiple functions of the thiol-based electron flow pathways of Escherichia coli: eternal concepts revisited. Biochim Biophys Acta. 2008;1780(11):1170–1200.
  • Hatahet F, Boyd D, Beckwith J. Disulfide bond formation in prokaryotes: history, diversity and design. Biochim Biophys Acta. 2014;1844(8):1402–1414.
  • Aslund F, Berndt KD, Holmgren A. Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria. J Biol Chem. 1997;272(49):30780–30786.
  • Parsonage D, Karplus PA, Poole LB. Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin. Proc Natl Acad Sci U S A. 2008;105(24):8209–8214.
  • Inaba K, Ito K. Paradoxical redox properties of DsbB and DsbA in the protein disulfide-introducing reaction cascade. EMBO J. 2002;21(11):2646–2654.
  • Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000;267(20):6102–6109.
  • Perkins A, Nelson KJ, Parsonage D, et al. Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci. 2015;40(8):435–445.
  • Perkins A, Poole LB, Karplus PA. Tuning of peroxiredoxin catalysis for various physiological roles. Biochemistry. 2014;53(49):7693–7705.
  • Winterbourn CC, Hampton MB. Redox biology: signaling via a peroxiredoxin sensor. Nat Chem Biol. 2015;11(1):5–6.
  • Winterbourn CC, Hampton MB. Thiol chemistry and specificity in redox signaling. Free Radic Biol Med. 2008;45(5):549–561.
  • Zhou A, Carrell RW, Murphy MP, et al. A redox switch in angiotensinogen modulates angiotensin release. Nature. 2010;468(7320):108–111.
  • Watanabe R, Nakamura H, Masutani H, et al. Anti-oxidative, anti-cancer and anti-inflammatory actions by thioredoxin 1 and thioredoxin-binding protein-2. Pharmacol Ther. 2010;127(3):261–270.
  • Tong Q, Zhu Y, Galaske JW, et al. MnTE-2-PyP modulates thiol oxidation in a hydrogen peroxide-mediated manner in a human prostate cancer cell. Free Radic Biol Med. 2016;101:32–43.
  • Spencer JP, Jenner P, Daniel SE, et al. Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species. J Neurochem. 1998;71(5):2112–2122.
  • Maron BA, Zhang YY, White K, et al. Aldosterone inactivates the endothelin-B receptor via a cysteinyl thiol redox switch to decrease pulmonary endothelial nitric oxide levels and modulate pulmonary arterial hypertension. Circulation. 2012;126(8):963–974.
  • Jaeger T, Flohe L. The thiol-based redox networks of pathogens: unexploited targets in the search for new drugs. Biofactors. 2006;27(1-4):109–120.
  • Staerck C, Gastebois A, Vandeputte P, et al. Microbial antioxidant defense enzymes. Microb Pathog. 2017;110:56–65.
  • Wobbe L, Blifernez O, Schwarz C, et al. Cysteine modification of a specific repressor protein controls the translational status of nucleus-encoded LHCII mRNAs in Chlamydomonas. Proc Natl Acad Sci U S A. 2009;106(32):13290–13295.
  • Messina S, De Simone G, Ascenzi P. Cysteine-based regulation of redox-sensitive Ras small GTPases. Redox Biol. 2019;26:101282.
  • Rhee SG. Cell signaling. H2O2, a necessary evil for cell signaling. Science. 2006;312(5782):1882–1883.
  • Bae YS, Kang SW, Seo MS, et al. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem. 1997;272(1):217–221.
  • Zhang J, Jin N, Liu Y, et al. Hydrogen peroxide stimulates extracellular signal-regulated protein kinases in pulmonary arterial smooth muscle cells. Am J Respir Cell Mol Biol. 1998;19(2):324–332.
  • Colavitti R, Pani G, Bedogni B, et al. Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR. J Biol Chem. 2002;277(5):3101–3108.
  • Chen KC, Zhou Y, Xing K, et al. Platelet derived growth factor (PDGF)-induced reactive oxygen species in the lens epithelial cells: the redox signaling. Exp Eye Res. 2004;78(6):1057–1067.
  • Christman MF, Storz G, Ames BN. Oxyr, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins. Proc Natl Acad Sci U S A. 1989;86(10):3484–3488.
  • Zheng M, Aslund F, Storz G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science. 1998;279(5357):1718–1721.
  • Zheng M, Storz G. Redox sensing by prokaryotic transcription factors. Biochem Pharmacol. 2000;59(1):1–6.
  • Imlay JA. Pathways of oxidative damage. Annu Rev Microbiol. 2003;57:395–418.
  • Imlay JA. Where in the world do bacteria experience oxidative stress? Environ Microbiol. 2019;21(2):521–530.
  • Pillay CS, Dennison C. Cathepsin B stability, but not activity, is affected in cysteine:cystine redox buffers. Biol Chem. 2002;383(7-8):1199–1204.
  • Lalmanach G, Saidi A, Bigot P, et al. Regulation of the proteolytic activity of cysteine cathepsins by oxidants. Int J Mol Sci. 2020;21(6):1–20.
  • Chiu J, Hogg PJ. Allosteric disulfides: sophisticated molecular structures enabling flexible protein regulation. J Biol Chem. 2019;294(8):2949–2960.
  • Cook KM, Hogg PJ. Post-translational control of protein function by disulfide bond cleavage. Antioxid Redox Signal. 2013;18(15):1987–2015.
  • Dietz KJ, Hell R. Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress. Biol Chem. 2015;396(5):483–494.
  • Serrano L. Synthetic biology: promises and challenges. Mol Syst Biol. 2007;3:1–5.
  • Anderson DA, Jones RD, Arkin AP, et al. Principles of synthetic biology: a MOOC for an emerging field. Syn Biol. 2019;4(1)):1–8.
  • Grozinger L, Amos M, Gorochowski TE, et al. Pathways to cellular supremacy in biocomputing. Nat Commun. 2019;10:1–11.
  • Khalil AS, Collins JJ. Synthetic biology: applications come of age. Nat Rev Genet. 2010;11(5):367–379.
  • Shih PM, Liang Y, Loque D. Biotechnology and synthetic biology approaches for metabolic engineering of bioenergy crops. Plant J. 2016;87(1):103–117.
  • Tinafar A, Jaenes K, Pardee K. Synthetic biology goes cell-free. BMC Biol. 2019;17(1):1–14.
  • Weber W, Fussenegger M. Emerging biomedical applications of synthetic biology. Nat Rev Genet. 2012;13(1):21–35.
  • Clarke L, Kitney R. Developing synthetic biology for industrial biotechnology applications. Biochem Soc Trans. 2020;48(1):113–122.
  • Hutchison CA, Chuang RY, Noskov VN, et al. Design and synthesis of a minimal bacterial genome. Science. 2016;351(6280):aad6253-1–aad6253-11.
  • Gibson DG, Glass JI, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science. 2010;329(5987):52–56.
  • Metzakopian E, Strong A, Iyer V, et al. Enhancing the genome editing toolbox: genome wide CRISPR arrayed libraries. Sci Rep-Uk. 2017;7:1–9.
  • Zhang YK, Lamb BM, Feldman AW, et al. A semisynthetic organism engineered for the stable expansion of the genetic alphabet. P Natl Acad Sci USA. 2017;114(6):1317–1322.
  • Isaacs FJ, Carr PA, Wang HH, et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science. 2011;333(6040):348–353.
  • Cameron DE, Bashor CJ, Collins JJ. A brief history of synthetic biology. Nat Rev Microbiol. 2014;12(5):381–390.
  • Vilanova C, Porcar M. iGEM 2.0–refoundations for engineering biology. Nat Biotechnol. 2014;32(5):420–424.
  • Weiss R, Panke S. Synthetic biology-paths to moving forward. Curr Opin Biotechnol. 2009;20(4):447–448.
  • Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli. Nature. 2000;403(6767):339–342.
  • Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature. 2000;403(6767):335–338.
  • Brophy JA, Voigt CA. Principles of genetic circuit design. Nat Methods. 2014;11(5):508–520.
  • Nandagopal N, Elowitz MB. Synthetic biology: integrated gene circuits. Science. 2011;333(6047):1244–1248.
  • Purnick PE, Weiss R. The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol. 2009;10(6):410–422.
  • Tordoff J, Weiss R. Self-organizing multicellular structures designed using synthetic biology. Nature. 2018;559(7713):184–185.
  • Ro DK, Paradise EM, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature. 2006;440(7086):940–943.
  • Gao C, Hou J, Xu P, et al. Programmable biomolecular switches for rewiring flux in Escherichia coli. Nat Commun. 2019;10(1):3751.
  • Gordley RM, Bugaj LJ, Lim WA. Modular engineering of cellular signaling proteins and networks. Curr Opin Struct Biol. 2016;39:106–114.
  • Toda S, Frankel NW, Lim WA. Engineering cell-cell communication networks: programming multicellular behaviors. Curr Opin Chem Biol. 2019;52:31–38.
  • Gerardin J, Reddy NR, Lim WA. The design principles of biochemical timers: circuits that discriminate between transient and sustained stimulation. Cell Syst. 2019;9(3):297–308 e2.
  • Roybal KT, Lim WA. Synthetic immunology: hacking immune cells to expand their therapeutic capabilities. Annu Rev Immunol. 2017;35:229–253.
  • Gordley RM, Williams RE, Bashor CJ, et al. Engineering dynamical control of cell fate switching using synthetic phospho-regulons. Proc Natl Acad Sci U S A. 2016;113(47):13528–13533.
  • de Lorenzo V. Beware of metaphors: chasses and orthogonality in synthetic biology. Bioeng Bugs. 2011;2(1):3–7.
  • Held JM. Redox systems biology: harnessing the sentinels of the cysteine redoxome. Antioxid Redox Signal. 2020;32(10):659–676.
  • Ulrich K, Jakob U. The role of thiols in antioxidant systems. Free Radic Biol Med. 2019;140:14–27.
  • Fan J, Ye J, Kamphorst JJ, et al. Quantitative flux analysis reveals folate-dependent NADPH production. Nature. 2014;510(7504):298–302.
  • Agledal L, Niere M, Ziegler M. The phosphate makes a difference: cellular functions of NADP. Redox Rep. 2010;15(1):2–10.
  • Berger F, Ramirez-Hernandez MH, Ziegler M. The new life of a centenarian: signalling functions of NAD(P). Trends Biochem Sci. 2004;29(3):111–118.
  • Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: mechanisms of NADPH oxidase activation and bacterial resistance. Front Cell Infect Microbiol. 2017;7:373.
  • Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal. 2008;10(2):179–206.
  • Canelas AB, van Gulik WM, Heijnen JJ. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions. Biotechnol Bioeng. 2008;100(4):734–743.
  • Schwartz JP, Passonneau JV, Johnson GS, et al. The effect of growth conditions on NAD+ and NADH concentrations and the NAD+:NADH ratio in normal and transformed fibroblasts. J Biol Chem. 1974;249(13):4138–4143.
  • Ortenberg R, Beckwith J. Functions of thiol-disulfide oxidoreductases in E. coli: redox myths, realities, and practicalities. Antioxid Redox Signal. 2003;5(4):403–411.
  • Oka OB, Bulleid NJ. Forming disulfides in the endoplasmic reticulum. Biochim Biophys Acta. 2013;1833(11):2425–2429.
  • Kang Z, Qin T, Zhao Z. Thioredoxins and thioredoxin reductase in chloroplasts: A review. Gene. 2019;706:32–42.
  • Yoshida K, Yokochi Y, Hisabori T. New light on chloroplast redox regulation: molecular mechanism of protein thiol oxidation. Front Plant Sci. 2019;10:1534.
  • Holmgren A. Pyridine nucleotide – disulfide oxidoreductases. Experientia Suppl. 1980;36:149–180.
  • Mustacich D, Powis G. Thioredoxin reductase. Biochem J. 2000;346(Pt 1):1–8.
  • Hirt RP, Muller S, Embley TM, et al. The diversity and evolution of thioredoxin reductase: new perspectives. Trends Parasitol. 2002;18(7):302–308.
  • Derman AI, Prinz WA, Belin D, et al. Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science. 1993;262(5140):1744–1747.
  • Fernandes AP, Holmgren A. Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid Redox Signal. 2004;6(1):63–74.
  • Draculic T, Dawes IW, Grant CM. A single glutaredoxin or thioredoxin gene is essential for viability in the yeast Saccharomyces cerevisiae. Mol Microbiol. 2000;36(5):1167–1174.
  • Prinz WA, Aslund F, Holmgren A, et al. The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem. 1997;272(25):15661–15667.
  • Ritz D, Lim J, Reynolds CM, et al. Conversion of a peroxiredoxin into a disulfide reductase by a triplet repeat expansion. Science. 2001;294(5540):158–160.
  • Yamamoto Y, Ritz D, Planson AG, et al. Mutant AhpC peroxiredoxins suppress thiol-disulfide redox deficiencies and acquire deglutathionylating activity. Mol Cell. 2008;29(1):36–45.
  • Faulkner MJ, Veeravalli K, Gon S, et al. Functional plasticity of a peroxidase allows evolution of diverse disulfide-reducing pathways. Proc Natl Acad Sci USA. 2008;105(18):6735–6740.
  • Jones DP, Go YM. Mapping the cysteine proteome: analysis of redox-sensing thiols. Curr Opin Chem Biol. 2011;15(1):103–112.
  • Dietz KJ, Jacquot JP, Harris G. Hubs and bottlenecks in plant molecular signalling networks. New Phytol. 2010;188(4):919–938.
  • Pillay CS, Hofmeyr J-HS, Rohwer JM. The logic of kinetic regulation in the thioredoxin system. BMC Syst Biol. 2011;5(1):15.
  • Ingles-Prieto A, Ibarra-Molero B, Delgado-Delgado A, et al. Conservation of protein structure over four billion years. Structure. 2013;21(9):1690–1697.
  • Modi T, Huihui J, Ghosh K, et al. Ancient thioredoxins evolved to modern-day stability-function requirement by altering native state ensemble. Philos Trans R Soc Lond B Biol Sci. 2018;373(1749):1–10.
  • Hanschmann EM, Godoy JR, Berndt C, et al. Thioredoxins, glutaredoxins, and peroxiredoxins–molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal. 2013;19(13):1539–1605.
  • Tanaka LY, Oliveira PVS, Laurindo FRM. Peri/epicellular thiol oxidoreductases as mediators of extracellular redox signaling. Antioxid Redox Signal. 2020;33(4):280–307.
  • Qi Y, Grishin NV. Structural classification of thioredoxin-like fold proteins. Proteins. 2005;58(2):376–388.
  • Martin JL. Thioredoxin–a fold for all reasons. Structure. 1995;3(3):245–250.
  • Balsera M, Buchanan BB. Evolution of the thioredoxin system as a step enabling adaptation to oxidative stress. Free Radic Biol Med. 2019;140:28–35.
  • Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem. 1989;264(24):13963–13966.
  • Hofmeyr JH, Kacser H, van der Merwe KJ. Metabolic control analysis of moiety-conserved cycles. Eur J Biochem. 1986;155(3):631–641.
  • Hofmeyr JH. The harmony of the cell: the regulatory design of cellular processes. Essays Biochem. 2008;45:57–66.
  • Padayachee L, Pillay CS. The thioredoxin system and not the Michaelis-Menten equation should be fitted to substrate saturation datasets from the thioredoxin insulin assay. Redox Rep. 2016;21(4):170–179.
  • Pillay CS, Hofmeyr J-HS, Olivier BG, et al. Enzymes or redox couples? The kinetics of thioredoxin and glutaredoxin reactions in a systems biology context. Biochem J. 2009;417(1):269–275.
  • Go YM, Roede JR, Walker DI, et al. Selective targeting of the cysteine proteome by thioredoxin and glutathione redox systems. Mol Cell Proteomics. 2013;12(11):3285–3296.
  • Jones DP. Redox sensing: orthogonal control in cell cycle and apoptosis signalling. J Intern Med. 2010;268(5):432–448.
  • Nkabyo YS, Ziegler TR, Gu LH, et al. Glutathione and thioredoxin redox during differentiation in human colon epithelial (Caco-2) cells. Am J Physiol Gastrointest Liver Physiol. 2002;283:G1352–G1359.
  • Watson WH, Jones DP. Oxidation of nuclear thioredoxin during oxidative stress. FEBS Lett. 2003;543(1–3):144–147.
  • Berndt C, Lillig CH, Flohe L. Redox regulation by glutathione needs enzymes. Front Pharmacol. 2014;5:168.
  • Ursini F, Maiorino M, Forman HJ. Redox homeostasis: The golden mean of healthy living. Redox Biol. 2016;8:205–215.
  • Pillay CS, Hofmeyr JH, Mashamaite LN, et al. From top-down to bottom-up: computational modeling approaches for cellular redoxin networks. Antioxid Redox Signal. 2013;18(16):2075–2086.
  • Holmgren A. Reduction of disulfides by thioredoxin. Exceptional reactivity of insulin and suggested functions of thioredoxin in mechanism of hormone action. J Biol Chem. 1979;254(18):9113–9119.
  • Padayachee L, Rohwer JM, Pillay CS. The thioredoxin redox potential and redox charge are surrogate measures for flux in the thioredoxin system. Arch Biochem Biophys. 2020;680:108231.
  • Meister A. Glutathione metabolism. Methods Enzymol. 1995;251:3–7.
  • Perera VR, Newton GL, Pogliano K. Bacillithiol: a key protective thiol in Staphylococcus aureus. Expert Rev Anti Infect Ther. 2015;13(9):1089–1107.
  • Newton GL, Javor B. gamma-Glutamylcysteine and thiosulfate are the major low-molecular-weight thiols in halobacteria. J Bacteriol. 1985;161(1):438–441.
  • Van Laer K, Hamilton CJ, Messens J. Low-molecular-weight thiols in thiol-disulfide exchange. Antioxid Redox Signal. 2013;18(13):1642–1653.
  • Turner E, Klevit R, Hopkins PB, et al. Ovothiol: a novel thiohistidine compound from sea urchin eggs that confers NAD(P)H-O2 oxidoreductase activity on ovoperoxidase. J Biol Chem. 1986;261(28):13056–13063.
  • Jothivasan VK, Hamilton CJ. Mycothiol: synthesis, biosynthesis and biological functions of the major low molecular weight thiol in actinomycetes. Nat Prod Rep. 2008;25(6):1091–1117.
  • Spies HS, Steenkamp DJ. Thiols of intracellular pathogens. Identification of ovothiol A in Leishmania donovani and structural analysis of a novel thiol from Mycobacterium bovis. Eur J Biochem. 1994;224(1):203–213.
  • Winterbourn CC. The biological chemistry of hydrogen peroxide. Methods Enzymol. 2013;528:3–25.
  • Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001;30(11):1191–1212.
  • Winterbourn CC. Are free radicals involved in thiol-based redox signaling? Free Radic Biol Med. 2015;80:164–170.
  • Gallogly MM, Starke DW, Mieyal JJ. Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxid Redox Signal. 2009;11(5):1059–1081.
  • Mashamaite LN, Rohwer JM, Pillay CS. The glutaredoxin mono- and di-thiol mechanisms for deglutathionylation are functionally equivalent: implications for redox systems biology. Biosci Rep. 2015;35(1):1–10.
  • Ukuwela AA, Bush AI, Wedd AG, et al. Glutaredoxins employ parallel monothiol-dithiol mechanisms to catalyze thiol-disulfide exchanges with protein disulfides. Chem Sci. 2018;9(5):1173–1183.
  • Zimmermann J, Oestreicher J, Hess S, et al. One cysteine is enough: A monothiol Grx can functionally replace all cytosolic Trx and dithiol Grx. Redox Biol. 2020;36:101598.
  • Berndt C, Lillig CH. Glutathione, glutaredoxins, and iron. Antioxid Redox Signal. 2017;27(15):1235–1251.
  • Ouyang Y, Peng Y, Li J, et al. Modulation of thiol-dependent redox system by metal ions via thioredoxin and glutaredoxin systems. Metallomics. 2018;10(2):218–228.
  • Gutteridge JM, Halliwell B. Free radicals and antioxidants in the year 2000. A historical look to the future. Ann N Y Acad Sci. 2000;899:136–147.
  • Forman HJ. Redox signaling: An evolution from free radicals to aging. Free Radic Biol Med. 2016;97:398–407.
  • Karplus PA. A primer on peroxiredoxin biochemistry. Free Radic Biol Med. 2015;80:183–190.
  • Wood ZA, Schroder E, Robin Harris J, et al. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci. 2003;28(1):32–40.
  • Hall A, Karplus PA, Poole LB. Typical 2-Cys peroxiredoxins–structures, mechanisms and functions. FEBS J. 2009;276(9):2469–2477.
  • Nelson KJ, Knutson ST, Soito L, et al. Analysis of the peroxiredoxin family: using active-site structure and sequence information for global classification and residue analysis. Proteins. 2011;79(3):947–964.
  • Soito L, Williamson C, Knutson ST, et al. PREX: PeroxiRedoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family. Nucleic Acids Res. 2011;39(Database issue):D332–D337.
  • Kang SW, Rhee SG, Chang TS, et al. 2-Cys peroxiredoxin function in intracellular signal transduction: therapeutic implications. Trends Mol Med. 2005;11(12):571–578.
  • Seo MS, Kang SW, Kim K, et al. Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J Biol Chem. 2000;275(27):20346–20354.
  • Park J, Lee S, Lee S, et al. 2-cys peroxiredoxins: emerging hubs determining redox dependency of Mammalian signaling networks. Int J Cell Biol. 2014;2014:715867.
  • Pedrajas JR, Padilla CA, McDonagh B, et al. Glutaredoxin participates in the reduction of peroxides by the mitochondrial 1-CYS peroxiredoxin in Saccharomyces cerevisiae. Antioxid Redox Signal. 2010;13(3):249–258.
  • Manevich Y, Feinstein SI, Fisher AB. Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with pi GST. Proc Natl Acad Sci U S A. 2004;101(11):3780–3785.
  • Netto LES, Chae HZ, Kang SW, et al. Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. TSA possesses thiol peroxidase activity. J Biol Chem. 1996;271(26):15315–15321.
  • Rhee SG, Kil IS. Multiple functions and regulation of mammalian peroxiredoxins. Annu Rev Biochem. 2017;86:749–775.
  • Peskin AV, Pace PE, Behring JB, et al. Glutathionylation of the active site cysteines of peroxiredoxin 2 and recycling by glutaredoxin. J Biol Chem. 2016;291(6):3053–3062.
  • Klomsiri C, Karplus PA, Poole LB. Cysteine-based redox switches in enzymes. Antioxid Redox Signal. 2011;14(6):1065–1077.
  • Wood ZA, Poole LB, Karplus PA. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science. 2003;300(5619):650–653.
  • Poole LB. The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med. 2015;80:148–157.
  • Ostman A, Frijhoff J, Sandin A, et al. Regulation of protein tyrosine phosphatases by reversible oxidation. J Biochem. 2011;150(4):345–356.
  • Dagnell M, Cheng Q, Rizvi SHM, et al. Bicarbonate is essential for protein-tyrosine phosphatase 1B (PTP1B) oxidation and cellular signaling through EGF-triggered phosphorylation cascades. J Biol Chem. 2019;294(33):12330–12338.
  • Peskin AV, Pace PE, Winterbourn CC. Enhanced hyperoxidation of peroxiredoxin 2 and peroxiredoxin 3 in the presence of bicarbonate/CO2. Free Radic Biol Med. 2019;145:1–7.
  • Truzzi DR, Coelho FR, Paviani V, et al. The bicarbonate/carbon dioxide pair increases hydrogen peroxide-mediated hyperoxidation of human peroxiredoxin 1. J Biol Chem. 2019;294(38):14055–14067.
  • Pillay CS, Eagling BD, Driscoll SR, et al. Quantitative measures for redox signaling. Free Radic Biol Med. 2016;96:290–303.
  • Delaunay A, Isnard AD, Toledano MB. H2O2 sensing through oxidation of the Yap1 transcription factor. EMBO J. 2000;19(19):5157–5166.
  • Bersweiler A, D’Autreaux B, Mazon H, et al. A scaffold protein that chaperones a cysteine-sulfenic acid in H2O2 signaling. Nat Chem Biol. 2017;13(8):909–915.
  • Okazaki S, Tachibana T, Naganuma A, et al. Multistep disulfide bond formation in Yap1 is required for sensing and transduction of H2O2 stress signal. Mol Cell. 2007;27(4):675–688.
  • Tachibana T, Okazaki S, Murayama A, et al. A major peroxiredoxin-induced activation of Yap1 transcription factor is mediated by reduction-sensitive disulfide bonds and reveals a low level of transcriptional activation. J Biol Chem. 2009;284(7):4464–4472.
  • Pomposiello PJ, Demple B. Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol. 2001;19(3):109–114.
  • Aslund F, Zheng M, Beckwith J, et al. Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc Natl Acad Sci U S A. 1999;96(11):6161–6165.
  • Storz G, Tartaglia LA, Ames BN. The OxyR regulon. Antonie Van Leeuwenhoek. 1990;58(3):157–161.
  • Lee C, Lee SM, Mukhopadhyay P, et al. Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat Struct Mol Biol. 2004;11(12):1179–1185.
  • Rubens JR, Selvaggio G, Lu TK. Synthetic mixed-signal computation in living cells. Nat Commun. 2016;7:11658.
  • Virgile C, Hauk P, Wu HC, et al. Engineering bacterial motility towards hydrogen-peroxide. PLoS One. 2018;13(5):e0196999.
  • Tian T, Wang Z, Zhang J. Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxid Med Cell Longev. 2017;2017:4535194.
  • Rezaie A, Parker RD, Abdollahi M. Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause? Dig Dis Sci. 2007;52(9):2015–2021.
  • Alon U. An Introduction to systems biology: design principles of biological circuits. Chapman and Hall: CRC; 2006.
  • Corrado C, Fontana S. Hypoxia and HIF signaling: One axis with divergent effects. Int J Mol Sci. 2020;21(16):1–17.
  • Kobayashi Y, Oguro A, Hirata Y, et al. The regulation of hypoxia-inducible factor-1 (HIF-1alpha) expression by protein disulfide isomerase (PDI). PLoS One. 2021;16(2):e0246531.
  • Won YW, Bull DA, Kim SW. Functional polymers of gene delivery for treatment of myocardial infarct. J Control Release. 2014;195:110–119.
  • Xia JB, Wu HY, Lai BL, et al. Gene delivery of hypoxia-inducible VEGF targeting collagen effectively improves cardiac function after myocardial infarction. Sci Rep. 2017;7(1):13273.
  • Wu Y, Li Q, Liu Y, et al. Targeting hypoxia for sensitization of tumors to apoptosis enhancement through supramolecular biohybrid bacteria. Int J Pharm. 2021;605:120817.
  • Lobstein J, Emrich CA, Jeans C, et al. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Fact. 2012;11:56.
  • Lenon M, Ke N, Szady C, et al. Improved production of humira antibody in the genetically engineered Escherichia coli SHuffle, by co-expression of human PDI-GPx7 fusions. Appl Microbiol Biotechnol. 2020;104(22):9693–9706.
  • Berkmen M. Production of disulfide-bonded proteins in Escherichia coli. Protein Expr Purif. 2012;82(1):240–251.
  • Reuter WH, Masuch T, Ke N, et al. Utilizing redox-sensitive GFP fusions to detect in vivo redox changes in a genetically engineered prokaryote. Redox Biol. 2019;26:101280.
  • Schwarzlander M, Dick TP, Meyer AJ, et al. Dissecting redox biology using fluorescent protein sensors. Antioxid Redox Signal. 2016;24(13):680–712.
  • Zou Y, Wang A, Shi M, et al. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nat Protoc. 2018;13(10):2362–2386.
  • Ren W, Ai HW. Genetically encoded fluorescent redox probes. Sensors (Basel). 2013;13(11):15422–15433.
  • Nagai T, Sawano A, Park ES, et al. Circularly permuted Green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci U S A. 2001;98(6):3197–3202.
  • Topell S, Hennecke J, Glockshuber R. Circularly permuted variants of the Green fluorescent protein. FEBS Lett. 1999;457(2):283–289.
  • Belousov VV, Fradkov AF, Lukyanov KA, et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods. 2006;3(4):281–286.
  • Bilan DS, Belousov VV. In vivo imaging of hydrogen peroxide with hyPer probes. Antioxid Redox Signal. 2018;29(6):569–584.
  • Morgan B, Sobotta MC, Dick TP. Measuring E(GSH) and H2O2 with roGFP2-based redox probes. Free Radic Biol Med. 2011;51(11):1943–1951.
  • Gutscher M, Pauleau AL, Marty L, et al. Real-time imaging of the intracellular glutathione redox potential. Nat Methods. 2008;5(6):553–559.
  • Gutscher M, Sobotta MC, Wabnitz GH, et al. Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J Biol Chem. 2009;284(46):31532–31540.
  • Morgan B, Ezerina D, Amoako TN, et al. Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nat Chem Biol. 2013;9(2):119–125.
  • Morgan B. Reassessing cellular glutathione homoeostasis: novel insights revealed by genetically encoded redox probes. Biochem Soc Trans. 2014;42(4):979–984.
  • Morgan B, Van Laer K, Owusu TN, et al. Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. Nat Chem Biol. 2016;12(6):437–443.
  • Calabrese G, Peker E, Amponsah PS, et al. Hyperoxidation of mitochondrial peroxiredoxin limits H2O2 -induced cell death in yeast. EMBO J. 2019;38(18):e101552.
  • Christodoulou D, Kuehne A, Estermann A, et al. Reserve flux capacity in the pentose phosphate pathway by NADPH binding is conserved across kingdoms. iScience. 2019;19:1133–1144.
  • Christodoulou D, Link H, Fuhrer T, et al. Reserve flux capacity in the pentose phosphate pathway enables Escherichia coli’s rapid response to oxidative stress. Cell Syst. 2018;6(5):569–578 e7.
  • Zhang L, King E, Luo R, et al. Development of a high-throughput, in vivo selection platform for NADPH-dependent reactions based on redox balance principles. ACS Synth Biol. 2018;7(7):1715–1721.
  • Debarbieux L, Beckwith J. On the functional interchangeability, oxidant versus reductant, of members of the thioredoxin superfamily. J Bacteriol. 2000;182(3):723–727.
  • Chivers PT, Prehoda KE, Raines RT. The CXXC motif: a rheostat in the active site. Biochemistry. 1997;36(14):4061–4066.
  • Quan S, Schneider I, Pan J, et al. The CXXC motif is more than a redox rheostat. J Biol Chem. 2007;282(39):28823–28833.
  • Bewley KD, Dey M, Bjork RE, et al. Rheostat re-wired: alternative hypotheses for the control of thioredoxin reduction potentials. PLoS One. 2015;10(4):e0122466.
  • Trnka D, Engelke AD, Gellert M, et al. Molecular basis for the distinct functions of redox-active and FeS-transfering glutaredoxins. Nat Commun. 2020;11(1):3445.
  • Parsonage D, Youngblood DS, Sarma GN, et al. Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry. 2005;44(31):10583–10592.
  • Li J, Liu Y, Kim E, et al. Electrochemical reverse engineering: A systems-level tool to probe the redox-based molecular communication of biology. Free Radic Biol Med. 2017;105:110–131.
  • Corfield AP. Mucins: a biologically relevant glycan barrier in mucosal protection. Biochim Biophys Acta. 2015;1850(1):236–252.
  • Javitt G, Calvo MLG, Albert L, et al. Intestinal gel-forming mucins polymerize by disulfide-mediated dimerization of D3 domains. J Mol Biol. 2019;431(19):3740–3752.
  • Moriyama K, Minamihata K, Wakabayashi R, et al. Enzymatic preparation of a redox-responsive hydrogel for encapsulating and releasing living cells. Chem Commun (Camb). 2014;50(44):5895–5898.
  • Xu Y, Liu Y, Hu X, et al. The synthesis of a 2D ultra-large protein supramolecular nanofilm by chemoselective thiol-disulfide exchange and its emergent functions. Angew Chem Int Ed Engl. 2020;59(7):2850–2859.
  • Halvey PJ, Hansen JM, Johnson JM, et al. Selective oxidative stress in cell nuclei by nuclear-targeted D-amino acid oxidase. Antioxid Redox Signal. 2007;9(7):807–816.
  • Huang BK, Stein KT, Sikes HD. Modulating and measuring intracellular H2O2 using genetically encoded tools to study its toxicity to human cells. ACS Synth Biol. 2016;5(12):1389–1395.
  • Bulina ME, Chudakov DM, Britanova OV, et al. A genetically encoded photosensitizer. Nat Biotechnol. 2006;24(1):95–99.
  • Laporte A, Nordenbrock A, Lenzen S, et al. Light-induced intracellular hydrogen peroxide generation through genetically encoded photosensitizer KillerRed-SOD1. Free Radic Res. 2018;52(10):1170–1181.
  • Adimora NJ, Jones DP, Kemp ML. A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. Antioxid Redox Signal. 2010;13(6):731–743.
  • Dwivedi G, Kemp ML. Systemic redox regulation of cellular information processing. Antioxid Redox Signal. 2012;16(4):374–380.
  • Lim JB, Huang BK, Deen WM, et al. Analysis of the lifetime and spatial localization of hydrogen peroxide generated in the cytosol using a reduced kinetic model. Free Radic Biol Med. 2015;89:47–53.
  • Benfeitas R, Selvaggio G, Antunes F, et al. Hydrogen peroxide metabolism and sensing in human erythrocytes: a validated kinetic model and reappraisal of the role of peroxiredoxin II. Free Radic Biol Med. 2014;74:35–49.
  • Tomalin LE, Day AM, Underwood ZE, et al. Increasing extracellular H2O2 produces a bi-phasic response in intracellular H2O2, with peroxiredoxin hyperoxidation only triggered once the cellular H2O2-buffering capacity is overwhelmed. Free Radic Biol Med. 2016;95:333–348.
  • Stein KT, Moon SJ, Nguyen AN, et al. Kinetic modeling of H2O2 dynamics in the mitochondria of HeLa cells. PLoS Comput Biol. 2020;16(9):e1008202.
  • Lewis JE, Costantini F, Mims J, et al. Genome-scale modeling of NADPH-driven beta-lapachone sensitization in head and neck squamous cell carcinoma. Antioxid Redox Signal. 2018;29(10):937–952.
  • Berndt C, Schwenn JD, Lillig CH. The specificity of thioredoxins and glutaredoxins is determined by electrostatic and geometric complementarity. Chem Sci. 2015;6(12):7049–7058.
  • Gellert M, Hossain MF, Berens FJF, et al. Substrate specificity of thioredoxins and glutaredoxins – towards a functional classification. Heliyon. 2019;5(12):e02943.
  • Netto LE, de Oliveira MA, Tairum CA, et al. Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions. Free Radic Res. 2016;50(2):206–245.