Publication Cover
Redox Report
Communications in Free Radical Research
Volume 28, 2023 - Issue 1
2,642
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cystathionine γ-lyase S-sulfhydrates SIRT1 to attenuate myocardial death in isoprenaline-induced heart failure

, , &

References

  • Savarese G, Lund LH. Global public health burden of heart failure. Cardiac Fail Rev. 2017;3:7–11.
  • Members WG, Mozaffarian D, Benjamin EJ, et al. Committee AHAS and subcommittee SS. heart disease and stroke statistics-2016 update: a report from the American heart association. Circulation. 2016;133:e38–360.
  • Yu Y, Gupta A, Wu C, et al. Characteristics, management, and outcomes of patients hospitalized for heart failure in China: the China PEACE retrospective heart failure study. J Am Heart Assoc. 2019;8:e012884.
  • Mele L, Maskell LJ, Stuckey DJ, et al. The POU4F2/Brn-3b transcription factor is required for the hypertrophic response to angiotensin II in the heart. Cell Death Dis. 2019;10:621.
  • Wu D, Hu Q, Zhu D. An update on hydrogen sulfide and nitric oxide interactions in the cardiovascular system. Oxid Med Cell Longev. 2018;2018:4579140.
  • Wu D, Hu Q, Zhu Y. Therapeutic application of hydrogen sulfide donors: the potential and challenges. Front Med. 2016;10:18–27.
  • Kimura Y, Dargusch R, Schubert D, et al. Hydrogen sulfide protects HT22 neuronal cells from oxidative stress. Antioxid Redox Signaling. 2006;8:661–670.
  • Du C, Lin X, Xu W, et al. Sulfhydrated sirtuin-1 increasing its deacetylation activity is an essential epigenetics mechanism of anti-atherogenesis by hydrogen sulfide. Antioxid Redox Signaling. 2019;30:184–197.
  • Coletta C, Papapetropoulos A, Erdelyi K, et al. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci U S A. 2012;109:9161–9166.
  • Miller DL, Roth MB. Hydrogen sulfide increases thermotolerance and lifespan in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2007;104:20618–20622.
  • Wu D, Hu Q, Tan B, et al. Amelioration of mitochondrial dysfunction in heart failure through S-sulfhydration of Ca(2+)/calmodulin-dependent protein kinase II. Redox Biol. 2018;19:250–262.
  • Qipshidze N, Metreveli N, Mishra PK, et al. Hydrogen sulfide mitigates cardiac remodeling during myocardial infarction via improvement of angiogenesis. Int J Biol Sci. 2012;8:430–441.
  • Xia H, Li Z, Polhemus DJ, et al. Endothelial cell cystathionine gamma-lyase expression level modulates exercise capacity, vascular function, and myocardial ischemia reperfusion injury. J Am Heart Assoc. 2020;9:e017544.
  • Zhao L, An R, Yang Y, et al. Melatonin alleviates brain injury in mice subjected to cecal ligation and puncture via attenuating inflammation, apoptosis, and oxidative stress: the role of SIRT1 signaling. J Pineal Res. 2015;59:230–239.
  • Qingxun Hu DW, Walker M, Wang P, et al. Genetically encoded biosensors for evaluating NAD+/NADH ratio in cytosolic and mitochondrial compartments. Cell Reports Methods. 2021;1:100116.
  • Sundaresan NR, Pillai VB, Gupta MP. Emerging roles of SIRT1 deacetylase in regulating cardiomyocyte survival and hypertrophy. J Mol Cell Cardiol. 2011;51:614–618.
  • Gorski PA, Jang SP, Jeong D, et al. Role of SIRT1 in modulating acetylation of the sarco-endoplasmic reticulum Ca(2+)-ATPase in heart failure. Circ Res. 2019;124:e63–e80.
  • Tan M, Tang C, Zhang Y, et al. SIRT1/PGC-1alpha signaling protects hepatocytes against mitochondrial oxidative stress induced by bile acids. Free Radic Research. 2015;49:935–945.
  • Liu Y-H, Lu M, Xie Z-Z, et al. Hydrogen sulfide prevents heart failure development via inhibition of renin release from mast cells in isoproterenol-treated rats. Antioxid Redox Signaling. 2014;20:759–769.
  • Wu D, Hu Q, Liu X, et al. Hydrogen sulfide protects against apoptosis under oxidative stress through SIRT1 pathway in H9c2 cardiomyocytes. Nitric Oxide. 2015;46:204–212.
  • Paul BD, Snyder SH. H2s: A novel gasotransmitter that signals by sulfhydration. Trends Biochem Sci. 2015;40:687–700.
  • Shen Y, Shen Z, Miao L, et al. miRNA-30 family inhibition protects against cardiac ischemic injury by regulating cystathionine-γ-lyase expression. Antioxid Redox Signal. 2015;22(3):224–240.
  • Ayuk SM, Abrahamse H, Houreld NN. The role of photobiomodulation on gene expression of cell adhesion molecules in diabetic wounded fibroblasts in vitro. J Photochem Photobiol, B. 2016;161:368–374.
  • Alshammari GM, Al-Qahtani WH, AlFaris NA, et al. Quercetin alleviates cadmium chloride-induced renal damage in rats by suppressing endoplasmic reticulum stress through SIRT1-dependent deacetylation of Xbp-1s and eIF2alpha. Biomed Pharmacother. 2021;141:111862.
  • Qingxun Hu HZ, Cortés NG, Wu D, et al. Increased Drp1 acetylation by lipid overload induces cardiomyocyte death and heart dysfunction. Circ Res. 2020;126:15.
  • Waldman M, Cohen K, Yadin D, et al. Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving ‘SIRT1 and PGC-1alpha’. Cardiovasc Diabetol. 2018;17:111.
  • Marutani E, Morita M, Hirai S, et al. Sulfide catabolism ameliorates hypoxic brain injury. Nat Commun. 2021;12(1):3108.
  • Dan Wu BT, Sun Y, Hu Q. Cystathionine γ lyase S-sulfhydrates Drp1 to ameliorate heart dysfunction. Redox Biol. 2022;58:102519.
  • Miao L, Shen X, Whiteman M, et al. Hydrogen sulfide mitigates myocardial infarction via promotion of mitochondrial biogenesis-dependent M2 polarization of macrophages. Antioxid Redox Signaling. 2016;25:268–281.
  • Polhemus DJ, Calvert JW, Butler J, et al. The cardioprotective actions of hydrogen sulfide in acute myocardial infarction and heart failure. Scientifica (Cairo). 2014;2014:768607.
  • Zheng M, Qiao W, Cui J, et al. Hydrogen sulfide delays nicotinamide-induced premature senescence via upregulation of SIRT1 in human umbilical vein endothelial cells. Molecular and Celluar Biochemistry. 2014;393:59–67.
  • Hu M-Z, Zhou B, Mao H-Y, et al. Exogenous hydrogen sulfide postconditioning protects isolated Rat hearts from ischemia/reperfusion injury through Sirt1/PGC-1alpha signaling pathway. Int Heart J. 2016;57:477–482.
  • Tuomainen T, Tavi P. The role of cardiac energy metabolism in cardiac hypertrophy and failure. Exp Cell Res. 2017;360:12–18.
  • Meng X, Tan J, Li M, et al. Sirt1: role under the condition of ischemia/hypoxia. Cell Mol Neurobiol. 2017;37:17–28.
  • Revollo JR, Li X. The ways and means that fine tune Sirt1 activity. Trends Biochem Sci. 2013;38:160–167.
  • Yang Y, Fu W, Chen J, et al. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol. 2007;9:1253–1262.
  • Kornberg MD, Sen N, Hara MR, et al. GAPDH mediates nitrosylation of nuclear proteins. Nat Cell Biol. 2010;12:1094–1100.
  • Shinozaki S, Chang K, Sakai M, et al. Inflammatory stimuli induce inhibitory S-nitrosylation of the deacetylase SIRT1 to increase acetylation and activation of p53 and p65. Sci Signal. 2014;7:ra106.
  • Chen L, Feng Y, Zhou Y, et al. Dual role of Zn2+ in maintaining structural integrity and suppressing deacetylase activity of SIRT1. J Inorg Biochem. 2010;104:180–185.
  • Austin S, St-Pierre J. PGC1alpha and mitochondrial metabolism–emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci. 2012;125:4963–4971.
  • Tang BL. Sirt1 and the mitochondria. Mol Cells. 2016;39:87–95.
  • Jr JED, Lee Y, Gerhart-Hines Z, et al. Nutrient-dependent regulation of PGC-1alpha’s acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5. Biochim Biophys Acta, Biomembr. 2010;1804:1676–1683.
  • Gurd BJ. Deacetylation of PGC-1alpha by SIRT1: importance for skeletal muscle function and exercise-induced mitochondrial biogenesis. Appl Physiol Nutr Metabol. 2011;36:589–597.
  • Olmos Y, Sánchez-Gómez FJ, Wild B, et al. Sirt1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC-1alpha complex. Antioxid Redox Signaling. 2013;19:1507–1521.