Publication Cover
Redox Report
Communications in Free Radical Research
Volume 28, 2023 - Issue 1
1,268
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Licochalcone B confers protective effects against LPS-Induced acute lung injury in cells and mice through the Keap1/Nrf2 pathway

ORCID Icon, , , , , , , , , & show all

References

  • Vlaar AP, Juffermans NP. Transfusion-related acute lung injury: a clinical review. Lancet. 2013;382:984–94. doi:10.1016/S0140-6736(12)62197-7
  • Bhatia M, Moochhala S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. J Pathol. 2004;202:145–56. doi:10.1002/path.1491
  • Aoyama H, Uchida K, Aoyama K, et al. Assessment of therapeutic interventions and lung protective ventilation in patients With moderate to severe acute respiratory distress syndrome: A systematic review and network meta-analysis. JAMA Netw Open. 2019;2:1–16. doi:10.1001/jamanetworkopen.2019.8116
  • Wang CY, Calfee CS, Paul DW, et al. One-year mortality and predictors of death among hospital survivors of acute respiratory distress syndrome. Intensive Care Med. 2014;40:388–96. doi:10.1007/s00134-013-3186-3
  • Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome. Lancet Lond Engl. 2021;398:622–37. doi:10.1016/S0140-6736(21)00439-6
  • Standiford Theodore J., Ward Peter A. Therapeutic targeting of acute lung injury and acute respiratory distress syndrome. Transl Res J Lab Clin Med. 2016;167:183–191. doi:10.1016/j.trsl.2015.04.015
  • Cho H-Y, Reddy SP, Kleeberger SR. Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal. 2006;8:76–87. doi:10.1089/ars.2006.8.76
  • Alfieri A, Srivastava S, Siow RCM, et al. Sulforaphane preconditioning of the Nrf2/HO-1 defense pathway protects the cerebral vasculature against blood-brain barrier disruption and neurological deficits in stroke. Free Radic Biol Med. 2013;65:1012–22. doi:10.1016/j.freeradbiomed.2013.08.190
  • Lin Y, Kuang Y, Li K, et al. Nrf2 activators from glycyrrhiza inflata and their hepatoprotective activities against CCl4-induced liver injury in mice. Bioorg Med Chem. 2017;25:5522–30. doi:10.1016/j.bmc.2017.08.018
  • Sarady-Andrews JK, Liu F, Gallo D, et al. Biliverdin administration protects against endotoxin-induced acute lung injury in rats. Am J Physiol Lung Cell Mol Physiol. 2005;289:L1131–L1137. doi:10.1152/ajplung.00458.2004
  • Ryter SW, Choi AMK. Heme oxygenase-1/carbon monoxide: novel therapeutic strategies in critical care medicine. Curr Drug Targets. 2010;11:1485–94. doi:10.2174/1389450111009011485
  • An L, Liu C-T, Yu M-J, et al. Heme oxygenase-1 system, inflammation and ventilator-induced lung injury. Eur J Pharmacol. 2012;677:1–4. doi:10.1016/j.ejphar.2011.12.010
  • Furusawa J, Funakoshi-Tago M, Mashino T, et al. Glycyrrhiza inflata-derived chalcones, licochalcone A, licochalcone B and licochalcone D, inhibit phosphorylation of NF-kappaB p65 in LPS signaling pathway. Int Immunopharmacol. 2009;9:499–507. doi:10.1016/j.intimp.2009.01.031
  • Zhou B, Wang H, Zhang B, et al. Licochalcone B attenuates neuronal injury through anti-oxidant effect and enhancement of Nrf2 pathway in MCAO rat model of stroke. Int Immunopharmacol. 2021;100:1–12. doi:10.1016/j.intimp.2021.108073
  • Li Q, Feng H, Wang H, et al. Licochalcone B specifically inhibits the NLRP3 inflammasome by disrupting NEK7-NLRP3 interaction. EMBO Rep. 2022;23:1–18. doi:10.15252/embr.202153499
  • Wang J, Wang C-Y. Integrated miRNA and mRNA omics reveal the anti-cancerous mechanism of licochalcone B on human hepatoma cell HepG2. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2021;150:1–9. doi:10.1016/j.fct.2021.112096
  • Huang B, Liu J, Ju C, et al. Licochalcone A prevents the loss of dopaminergic neurons by inhibiting microglial activation in lipopolysaccharide (LPS)-induced Parkinson’s disease models. Int J Mol Sci. 2017;18:2043–2052. doi:10.3390/ijms18102043
  • Xie X, Sun S, Zhong W, et al. Zingerone attenuates lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol. 2014;19:103–9. doi:10.1016/j.intimp.2013.12.028
  • Butt Y, Kurdowska A, Allen TC. Acute lung injury: A clinical and molecular review. Arch Pathol Lab Med. 2016;140:345–50. doi:10.5858/arpa.2015-0519-RA
  • Sadek K, Abouzed T, Nasr S, et al. Licochalcone B ameliorates liver cancer via targeting of apoptotic genes, DNA repair systems, and cell cycle control. Iran J Pharm Res IJPR. 2020;19:372–86. doi:10.22037/ijpr.2020.1101292
  • Huang Z, Jin G. Licochalcone B induced apoptosis and autophagy in osteosarcoma tumor cells via the inactivation of PI3 K/AKT/mTOR pathway. Biol Pharm Bull. 2022;45:730–7. doi:10.1248/bpb.b21-00991
  • Song M, Yoon G, Choi J-S, et al. Janus kinase 2 inhibition by Licochalcone B suppresses esophageal squamous cell carcinoma growth. Phytother Res PTR. 2020;34:2032–43. doi:10.1002/ptr.6661
  • Cao Y, Xu W, Huang Y, et al. Licochalcone B, a chalcone derivative from Glycyrrhiza inflata, as a multifunctional agent for the treatment of Alzheimer’s disease. Nat Prod Res. 2020;34:736–9. doi:10.1080/14786419.2018.1496429
  • Su Z-Q, Mo Z-Z, Liao J-B, et al. Usnic acid protects LPS-induced acute lung injury in mice through attenuating inflammatory responses and oxidative stress. Int Immunopharmacol. 2014;22:371–8. doi:10.1016/j.intimp.2014.06.043
  • Halliwell B. Commentary for “Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts”. Arch Biochem Biophys. 2022;718:109151–109153. doi:10.1016/j.abb.2022.109151
  • Mirault ME, Tremblay A, Furling D, et al. Transgenic glutathione peroxidase mouse models for neuroprotection studies. Ann N Y Acad Sci. 1994;738:104–15. doi:10.1111/j.1749-6632.1994.tb21795.x
  • Li J, Lu K, Sun F, et al. Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway. J Transl Med. 2021;19:96–121. doi:10.1186/s12967-021-02745-1
  • Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(829–837):837a–837d. doi:10.1093/eurheartj/ehr304
  • Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: redox pathways in molecular medicine. Proc Natl Acad Sci U S A. 2018;115:5839–48. doi:10.1073/pnas.1804932115
  • Eiserich JP, Baldus S, Brennan M-L, et al. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science. 2002;296:2391–4. doi:10.1126/science.1106830
  • Yang H, Lv H, Li H, et al. Oridonin protects LPS-induced acute lung injury by modulating Nrf2-mediated oxidative stress and Nrf2-independent NLRP3 and NF-κB pathways. Cell Commun Signal. 2019;17:62–78. doi:10.1186/s12964-019-0366-y
  • Wang Z-F, Liu J, Yang Y-A, et al. A review: The anti-inflammatory, anticancer and antibacterial properties of four kinds of licorice flavonoids isolated from licorice. Curr Med Chem. 2020;27:1997–2011. doi:10.2174/0929867325666181001104550
  • Grahame Hardie D. AMP-activated protein kinase: a key regulator of energy balance with many roles in human disease. J Intern Med. 2014;276:543–59. doi:10.1111/joim.12268
  • Yao Y, Wang H, Xu F, et al. Insoluble-bound polyphenols of adlay seed ameliorate H2O2-induced oxidative stress in HepG2 cells via Nrf2 signalling. Food Chem. 2020;325:126865–9. doi:10.1016/j.foodchem.2020.126865
  • Kim JY, Kim DY, Son H, et al. Protease-activated receptor-2 activates NQO-1 via Nrf2 stabilization in keratinocytes. J Dermatol Sci. 2014;74:48–55. doi:10.1016/j.jdermsci.2013.11.010
  • Qing R, Huang Z, Tang Y, et al. Cordycepin alleviates lipopolysaccharide-induced acute lung injury via Nrf2/HO-1 pathway. Int Immunopharmacol. 2018;60:18–25. doi:10.1016/j.intimp.2018.04.032
  • Qiu Y-L, Cheng X-N, Bai F, et al. Aucubin protects against lipopolysaccharide-induced acute pulmonary injury through regulating Nrf2 and AMPK pathways. Biomed Pharmacother Biomedecine Pharmacother. 2018;106:192–9. doi:10.1016/j.biopha.2018.05.070
  • Cc C, Sy C, Cc C, et al. Djulis (Chenopodium formosanum) and its bioactive compounds protect human lung epithelial A549 cells from oxidative injury induced by particulate matter via Nrf2 signaling pathway. Mol Basel Switz. Molecules. 2021;27:253–281. doi:10.3390/molecules27010253