Publication Cover
Redox Report
Communications in Free Radical Research
Volume 28, 2023 - Issue 1
1,589
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Oxidative stress signaling in the pathogenesis of diabetic cardiomyopathy and the potential therapeutic role of antioxidant naringenin

, , , , , , , & ORCID Icon show all

References

  • Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. doi:10.1016/j.diabres.2019.107843
  • Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–281. doi:10.1016/j.diabres.2018.02.023
  • American Diabetes, A. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37:S81–S90. doi:10.2337/dc13-1041
  • Eizirik DL, Pasquali L, Cnop M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat Rev Endocrinol. 2020;16:349–362. doi:10.1038/s41574-020-0355-7
  • Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383:1068–1083. doi:10.1016/S0140-6736(13)62154-6
  • Yaribeygi H, Katsiki N, Behnam B, et al. MicroRNAs and type 2 diabetes mellitus: molecular mechanisms and the effect of antidiabetic drug treatment. Metabolism. 2018;87:48–55. doi:10.1016/j.metabol.2018.07.001
  • Yaribeygi H, Farrokhi FR, Butler AE, et al. Insulin resistance: review of the underlying molecular mechanisms. J Cell Physiol. 2019;234:8152–8161. doi:10.1002/jcp.27603
  • Yaribeygi H, Butler AE, Barreto GE, et al. Antioxidative potential of antidiabetic agents: a possible protective mechanism against vascular complications in diabetic patients. J Cell Physiol. 2019;234:2436–2446. doi:10.1002/jcp.27278
  • Yaribeygi H, Mohammadi MT, Sahebkar A. Crocin potentiates antioxidant defense system and improves oxidative damage in liver tissue in diabetic rats. Biomed Pharmacother. 2018;98:333–337. doi:10.1016/j.biopha.2017.12.077
  • Yaribeygi H, Mohammadi MT, Sahebkar A. PPAR-α Agonist improves hyperglycemia-induced oxidative stress in pancreatic cells by potentiating antioxidant defense system. Drug Res. 2018;68:355–360. doi:10.1055/s-0043-121143
  • Hurrle S, Hsu WH. The etiology of oxidative stress in insulin resistance. Biomed J. 2017;40:257–262. doi:10.1016/j.bj.2017.06.007
  • Hill MA, Yang Y, Zhang L, et al. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism. 2021;119:154766. doi:10.1016/j.metabol.2021.154766
  • Darenskaya MA, Kolesnikova LI, Kolesnikov SI. Oxidative stress: pathogenetic role in diabetes mellitus and its complications and therapeutic approaches to correction. Bull Exp Biol Med. 2021;171(2):179–189. doi:10.1007/s10517-021-05191-7
  • Yaribeygi H, Lhaf F, Sathyapalan T, et al. Effects of novel antidiabetes agents on apoptotic processes in diabetes and malignancy: implications for lowering tissue damage. Life Sci. 2019;231:116538. doi:10.1016/j.lfs.2019.06.013
  • Dinić S, Arambašić Jovanović J, Uskoković A, et al. Oxidative stress-mediated beta cell death and dysfunction as a target for diabetes management. Front Endocrinol. 2022;13:1006376. doi:10.3389/fendo.2022.1006376
  • Nakamura K, Miyoshi T, Yoshida M, et al. Pathophysiology and treatment of diabetic cardiomyopathy and heart failure in patients with diabetes mellitus. Int J Mol Sci. 2022;23:3587. doi:10.3390/ijms23073587
  • Dillmann WH. Diabetic cardiomyopathy. Circ Res. 2019;124:1160–1162. doi:10.1161/CIRCRESAHA.118.314665
  • Rawshani A, Rawshani A, Franzén S, et al. Mortality and cardiovascular disease in type 1 and type 2 diabetes. N Engl J Med. 2017;376:1407–1418. doi:10.1056/NEJMoa1608664
  • Zhang ZD, Tao Q, Qin Z, et al. Uptake and transport of naringenin and its antioxidant effects in human intestinal epithelial Caco-2 cells. Front Nutr. 2022;9:894117. doi:10.3389/fnut.2022.894117
  • Calis Z, Dasdelen D, Baltaci AK, et al. Naringenin prevents inflammation, apoptosis, and DNA damage in potassium oxonate-induced hyperuricemia in rat liver tissue: roles of Cytochrome C, NF-κB, Caspase-3, and 8-hydroxydeoxyguanosine. Metab Syndr Relat Disord. 2022;20:473–479. doi:10.1089/met.2022.0028
  • Du Y, Ma J, Fan Y, et al. Naringenin: a promising therapeutic agent against organ fibrosis. Oxid Med Cell Longev. 2021;2021:1210675. doi:10.1155/2021/1210675
  • Li H, Liu L, Cao Z, et al. Naringenin ameliorates homocysteine induced endothelial damage via the AMPKα/Sirt1 pathway. J Adv Res. 2021;34:137–147. doi:10.1016/j.jare.2021.01.009
  • Dayarathne LA, Ranaweera SS, Natraj P, et al. The effects of naringenin and naringin on the glucose uptake and AMPK phosphorylation in high glucose treated HepG2 cells. J Vet Sci. 2021;22:e92. doi:10.4142/jvs.2021.22.e92
  • Yang Y, Trevethan M, Wang S, et al. Beneficial effects of citrus flavanones naringin and naringenin and their food sources on lipid metabolism: an update on bioavailability, pharmacokinetics, and mechanisms. J Nutr Biochem. 2022;104:108967. doi:10.1016/j.jnutbio.2022.108967
  • Rubler S, Dlugash J, Yuceoglu YZ, et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Card. 1972;30:595–602. doi:10.1016/0002-9149(72)90595-4
  • Ritchie, R.H.; Abel, E.D, eds. Basic mechanisms of diabetic heart disease. Circ Res. 2020, 126, 1501-1525, doi:10.1161/CIRCRESAHA.120.315913
  • Nakamura M, Sadoshima J. Cardiomyopathy in obesity, insulin resistance and diabetes. J Physiol. 2020;598:2977–2993. doi:10.1113/JP276747
  • Mátyás C, Kovács A, Németh BT, et al. Comparison of speckle-tracking echocardiography with invasive hemodynamics for the detection of characteristic cardiac dysfunction in type-1 and type-2 diabetic rat models. Cardiovasc Diabetol. 2018;17:13. doi:10.1186/s12933-017-0645-0
  • Tan Y, Zhang Z, Zheng C, et al. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat. Rev. Cardiol. 2020;17:585–607. doi:10.1038/s41569-020-0339-2
  • Jia G, Whaley Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2018;61:21–28. doi:10.1007/s00125-017-4390-4
  • Sadasivam N, Kim YJ, Radhakrishnan K, et al. Oxidative stress, genomic integrity, and liver diseases. Molecules. 2022;27:3159. doi:10.3390/molecules27103159
  • Limbu S, Prosser BL, Lederer WJ, et al. X-ROS signaling depends on length-dependent calcium buffering by troponin. Cells. 2021 May 13;10(5):1189. doi:10.3390/cells10051189
  • Ganjikunta VS, Maddula RR, Bhasha S, et al. Cardioprotective effects of 6-gingerol against alcohol-induced ROS-mediated tissue injury and apoptosis in rats. Molecules. 2022 Dec 6;27(23):8606. doi:10.3390/molecules27238606
  • Shen S, He F, Cheng C, et al. Uric acid aggravates myocardial ischemia-reperfusion injury via ROS/NLRP3 pyroptosis pathway. Biomed Pharmacother. 2021 Jan;133:110990. doi:10.1016/j.biopha.2020.110990
  • Şirin G, Borlu F. Is cardiac troponin I valuable to detect low-level myocardial damage in congestive heart failure? Sisli Etfal Hastan Tip Bul. 2019 Jul 10;53(2):172–178. doi:10.14744/SEMB.2018.45336
  • Luc K, Schramm-Luc A, Guzik TJ, et al. Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol. 2019 Dec;70(6). doi:10.26402/jpp.2019.6.01
  • Dey S, DeMazumder D, Sidor A, et al. Mitochondrial ROS drive sudden cardiac death and chronic proteome remodeling in heart failure. Circ Res. 2018;123:356–371. doi:10.1161/CIRCRESAHA.118.312708
  • Hegyi B, Pölönen RP, Hellgren KT, et al. Cardiomyocyte Na+ and Ca2 + mishandling drives vicious cycle involving CaMKII, ROS, and ryanodine receptors. Basic Res Cardiol. 2021;116:58. doi:10.1007/s00395-021-00900-9
  • Coudriet GM, Delmastro Greenwood MM, Previte DM, et al. Treatment with a catalytic superoxide dismutase (SOD) mimetic improves liver steatosis, insulin sensitivity, and inflammation in obesity-induced type 2 diabetes. Antioxidants. 2017;6:85. doi:10.3390/antiox6040085
  • Sultan A, Singh J, Howarth FC. Mechanisms underlying electro-mechanical dysfunction in the Zucker diabetic fatty rat heart: a model of obesity and type 2 diabetes. Heart Fail Rev. 2020;25:873–886. doi:10.1007/s10741-019-09872-4
  • Lekli I, Haines DD, Balla G, et al. Autophagy: an adaptive physiological countermeasure to cellular senescence and ischaemia/reperfusion-associated cardiac arrhythmias. J Cell Mol Med. 2017;21:1058–1072. doi:10.1111/jcmm.13053
  • Liang Y, Li J, Lin Q, et al. Research progress on signaling pathway-associated oxidative stress in endothelial cells. Oxid Med Cell Longev. 2017;2017:7156941.. doi:10.1155/2017/7156941
  • Cui Y, Song M, Xiao B, et al. ROS-mediated mitophagy and apoptosis are involved in aluminum-induced femoral impairment in mice. Chem Biol Interact. 2021;349:109663. doi:10.1016/j.cbi.2021.109663
  • Hung SY, Chen WF, Lee YC, et al. Rhopaloic acid A induces apoptosis, autophagy and MAPK activation through ROS-mediated signaling in bladder cancer. Phytomedicine. 2021;92:153720. doi:10.1016/j.phymed.2021.153720
  • Zhang Z, Zhang H, Li D, et al. Caspase-3-mediated GSDME induced Pyroptosis in breast cancer cells through the ROS/JNK signalling pathway. J Cell Mol Med. 2021;25(17):8159–8168. doi:10.1111/jcmm.16574
  • Russo I, Frangogiannis NG. Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. J Mol Cell Cardiol. 2016;90:84–93. doi:10.1016/j.yjmcc.2015.12.011
  • Black HS. A synopsis of the associations of oxidative stress, ROS, and antioxidants with diabetes mellitus. Antioxidants (Basel). 2022;11(10):2003. doi:10.3390/antiox11102003
  • Chen M, Li L, Wang Z, et al. High molecular weight hyaluronic acid regulates P. gingivalis–induced inflammation and migration in human gingival fibroblasts via MAPK and NF-κB signaling pathway. Arch Oral Biol. 2019;98:75–80. doi:10.1016/j.archoralbio.2018.10.027
  • Chen X, Qian J, Wang L, et al. Kaempferol attenuates hyperglycemia-induced cardiac injuries by inhibiting inflammatory responses and oxidative stress. Endocrine. 2018;60:83–94. doi:10.1007/s12020-018-1525-4
  • Luo J, Yan D, Li S, et al. Allopurinol reduces oxidative stress and activates Nrf2/p62 to attenuate diabetic cardiomyopathy in rats. J Cell Mol Med. 2020;24:1760–1773. doi:10.1111/jcmm.14870
  • Li K, Zhai M, Jiang L, et al. Tetrahydrocurcumin ameliorates diabetic cardiomyopathy by attenuating high glucose-induced oxidative stress and fibrosis via activating the SIRT1 pathway. Oxid Med Cell Longev. 2019;2019:6746907. doi:10.1155/2019/6746907
  • Jin Q, Zhu Q, Wang K, et al. Allisartan isoproxil attenuates oxidative stress and inflammation through the SIRT1/Nrf2/NF-κB signalling pathway in diabetic cardiomyopathy rats. Mol Med Rep. 2021;23:215. doi:10.3892/mmr.2021.11854
  • Ulasov AV, Rosenkranz AA, Georgiev GP, et al. Nrf2/Keap1/ARE signaling: towards specific regulation. Life Sci. 2022;291:120111. doi:10.1016/j.lfs.2021.120111
  • Zhang Q, Liu J, Duan H, et al. Activation of Nrf2/HO-1 signaling: an important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J Adv Res. 2021;34:43–63. doi:10.1016/j.jare.2021.06.023
  • Shi YL, Zhang YP, Luo H, et al. Trilobatin, a natural food additive, exerts anti-type 2 diabetes effect mediated by Nrf2/ARE and IRS-1/GLUT2 signaling pathways. Front Pharmacol. 2022;13:62. doi:10.3389/fphar.2022.828473
  • Li D, Liu X, Pi W, et al. Fisetin attenuates doxorubicin-induced cardiomyopathy in vivo and in vitro by inhibiting ferroptosis through SIRT1/Nrf2 signaling pathway activation. Front Pharmacol. 2022;12:4175. doi:10.3389/fphar.2021.808480
  • Wu X, Zhou X, Lai S, et al. Curcumin activates Nrf2/HO-1 signaling to relieve diabetic cardiomyopathy injury by reducing ROS in vitro and in vivo. FASEB J. 2022;36:e22505. doi:10.1096/fj.202200543RRR
  • Fang Q, Liu X, Ding J, et al. Soluble epoxide hydrolase inhibition protected against diabetic cardiomyopathy through inducing autophagy and reducing apoptosis relying on Nrf2 upregulation and transcription activation. Oxid Med Cell Longev. 2022;2022:3773415. doi:10.1155/2022/3773415
  • Uddandrao VVS, Parim B, Singaravel S, et al. Polyherbal formulation ameliorates diabetic cardiomyopathy through attenuation of cardiac inflammation and oxidative stress Via NF-κB/Nrf-2/HO-1 pathway in diabetic rats. J Cardiovasc Pharmacol. 2022;79:e75–e86. doi:10.1097/FJC.0000000000001167
  • Gu J, Cheng Y, Wu H, et al. Metallothionein is downstream of Nrf2 and partially mediates sulforaphane prevention of diabetic cardiomyopathy. Diabetes. 2017;66:529–542. doi:10.2337/db15-1274
  • Wu S, Zhu J, Wu G, et al. 6-Gingerol alleviates ferroptosis and inflammation of diabetic cardiomyopathy via the Nrf2/HO-1 pathway. Oxid Med Cell Longev. 2022: 3027514. doi:10.1155/2022/3027514
  • Dong H, Zhang Y, Huang Y, et al. Pathophysiology of RAGE in inflammatory diseases. Front Immunol. 2022;13:931473. doi:10.3389/fimmu.2022.931473
  • Guerin Dubourg A, Cournot M, Planesse C, et al. Association between fluorescent advanced glycation End-products and vascular complications in type 2 diabetic patients. Biomed Res Int. 2017;2017:7989180. doi:10.1155/2017/7989180
  • Zhu Y, Wu F, Yang Q, et al. Resveratrol inhibits high glucose-induced H9c2 cardiomyocyte hypertrophy and damage via RAGE-dependent inhibition of the NF-κB and TGF-β1/Smad3 pathways. Evid Based Complement Altern Med. 2022;2022:7781910. doi:10.1155/2022/7781910
  • Wasim R, Mahmood T, Siddiqui MH, et al. Aftermath of AGE-RAGE cascade in the pathophysiology of cardiovascular ailments. Life Sci. 2022;307:120860. doi:10.1016/j.lfs.2022.120860
  • Luan Y, Zhang J, Wang M, et al. Advanced glycation end products facilitate the proliferation and reduce early apoptosis of cardiac microvascular endothelial cells via PKCβ signaling pathway: insight from diabetic cardiomyopathy. Anatol J Cardiol. 2020;23:141–150. doi:10.14744/AnatolJCardiol.2019.21504
  • Inacio MD, Costa MC, Lima TFO, et al. Pentoxifylline mitigates renal glycoxidative stress in obese mice by inhibiting AGE/RAGE signaling and increasing glyoxalase levels. Life Sci. 2020;258:118196. doi:10.1016/j.lfs.2020.118196
  • Liang B, Zhou Z, Yang Z, et al. AGEs–RAGE axis mediates myocardial fibrosis via activation of cardiac fibroblasts induced by autophagy in heart failure. Exp Physiol. 2022;107:879–891. doi:10.1113/EP090042
  • Hegab Z, Mohamed TMA, Stafford N, et al. Advanced glycation end products reduce the calcium transient in cardiomyocytes by increasing production of reactive oxygen species and nitric oxide. FEBS Open Bio. 2017;7:1672–1685. doi:10.1002/2211-5463.12284
  • Arshi B, Chen J, Ikram MA, et al. Advanced glycation end-products, cardiac function and heart failure in the general population: The Rotterdam Study. Diabetologia. 2023;66:472–481. doi:10.1007/s00125-022-05821-3
  • Willemsen S, Hartog JWL, van Veldhuisen DJ, et al. The role of advanced glycation end-products and their receptor on outcome in heart failure patients with preserved and reduced ejection fraction. Am Heart J. 2012;164:742–749e743. doi:10.1016/j.ahj.2012.07.027
  • Hartog JWL, Willemsen S, van Veldhuisen DJ, et al. Effects of alagebrium, an advanced glycation endproduct breaker, on exercise tolerance and cardiac function in patients with chronic heart failure. Eur J Heart Fail. 2011;13:899–908. doi:10.1093/eurjhf/hfr067
  • Vermot A, Petit Härtlein I, Smith SME, et al. NADPH oxidases (NOX): an overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants. 2021;10:890. doi:10.3390/antiox10060890
  • Eid SA, Savelieff MG, Eid AA, et al. Nox, Nox, are you there? The role of NADPH oxidases in the peripheral nervous system. Antioxid Redox Signal. 2022;37:613–630. doi:10.1089/ars.2021.0135
  • Elumalai S, Karunakaran U, Lee IK, et al. Rac1-NADPH oxidase signaling promotes CD36 activation under glucotoxic conditions in pancreatic beta cells. Redox Biol. 2017;11:126–134. doi:10.1016/j.redox.2016.11.009
  • Gabriela Nunes M-L, Aparecida Vilas Boas E, Carlein C, et al. Evidence for NADPH oxidase activation by GPR40 in pancreatic β-cells. Redox Rep. 2020;25:41–50. doi:10.1080/13510002.2020.1757877
  • Lu Y, Zhu S, Wang X, et al. ShengMai-San attenuates cardiac remodeling in diabetic rats by inhibiting NOX-mediated oxidative stress. Diabetes Metab Syndr Obes. 2021;14:647–657. doi:10.2147/DMSO.S287582
  • Zheng D, Dong S, Li T, et al. Exogenous hydrogen sulfide attenuates cardiac fibrosis through reactive oxygen species signal pathways in experimental diabetes mellitus models. Cell Physiol Biochem. 2015;36:917–929. doi:10.1159/000430266
  • Capece D, Verzella D, Flati I, et al. NF-κB: blending metabolism, immunity, and inflammation. Trends Immunol. 2022;43:757–775. doi:10.1016/j.it.2022.07.004
  • Li L, Luo W, Qian Y, et al. Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine. 2019;59:152774. doi:10.1016/j.phymed.2018.11.034
  • Liu X, Guo B, Zhang W, et al. MiR-20a-5p overexpression prevented diabetic cardiomyopathy via inhibition of cardiomyocyte apoptosis, hypertrophy, fibrosis and JNK/NF-κB signalling pathway. J. Biochem. 2021;170:349–362. doi:10.1093/jb/mvab047
  • Belali OM, Ahmed MM, Mohany M, et al. LCZ696 protects against diabetic cardiomyopathy-induced myocardial inflammation, ER stress, and apoptosis through inhibiting AGEs/NF-κB and PERK/CHOP signaling pathways. Int J Mol Sci. 2022;23:1288. doi:10.3390/ijms23031288
  • Guo Y, Zhuang X, Huang Z, et al. Klotho protects the heart from hyperglycemia-induced injury by inactivating ROS and NF-κB-mediated inflammation both in vitro and in vivo. Biochim Biophys Acta Mol Basis Dis. 2018;1864:238–251. doi:10.1016/j.bbadis.2017.09.029
  • Tang SG, Liu XY, Ye JM, et al. Isosteviol ameliorates diabetic cardiomyopathy in rats by inhibiting ERK and NF-κB signaling pathways. J Endocrinol. 2018;238:47–60. doi:10.1530/joe-17-0681
  • Zou F, Wang L, Liu H, et al. Sophocarpine suppresses NF-κB-mediated inflammation both in vitro and in vivo and inhibits diabetic cardiomyopathy. Front Pharmacol. 2019;10:1219. doi:10.3389/fphar.2019.01219
  • Byrne NJ, Rajasekaran NS, Abel ED, et al. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med. 2021;169:317–342. doi:10.1016/j.freeradbiomed.2021.03.046
  • Yan B, Ren J, Zhang Q, et al. Antioxidative effects of natural products on diabetic cardiomyopathy. J Diabetes Res. 2017;2017:2070178. doi:10.1155/2017/2070178
  • Zeng W, Jin L, Zhang F, et al. Naringenin as a potential immunomodulator in therapeutics. Pharmacol Res. 2018;135:122–126. doi:10.1016/j.phrs.2018.08.002
  • Nguyen Ngo C, Willcox JC, Lappas M. Anti-Diabetic, anti-inflammatory, and anti-oxidant effects of naringenin in an in vitro human model and an in vivo murine model of gestational diabetes mellitus. Mol Nutr Food Res. 2019;63:1900224. doi:10.1002/mnfr.201900224
  • Rajappa R, Sireesh D, Salai MB, et al. Treatment with naringenin elevates the activity of transcription factor Nrf2 to protect pancreatic β-cells from streptozotocin-induced diabetes in vitro and in vivo. Front Pharmacol. 2019;9:1562. doi:10.3389/fphar.2018.01562
  • Wang K, Chen Z, Huang L, et al. Naringenin reduces oxidative stress and improves mitochondrial dysfunction via activation of the Nrf2/ARE signaling pathway in neurons. Int J Mol Med. 2017;40:1582–1590. doi:10.3892/ijmm.2017.3134
  • Yang Y, He B, Zhang X, et al. Geraniin protects against cerebral ischemia/reperfusion injury by suppressing oxidative stress and neuronal apoptosis via regulation of the Nrf2/HO-1 pathway. Oxid Med Cell Longev. 2022;18:2152746. doi:10.1155/2022/2152746
  • Feng J, Luo J, Deng L, et al. Naringenin-induced HO-1 ameliorates high glucose or free fatty acids-associated apoptosis via PI3 K and JNK/Nrf2 pathways in human umbilical vein endothelial cells. Int Immunopharmacol. 2019;75:105769. doi:10.1016/j.intimp.2019.105769
  • Zhang B, Wan S, Liu H, et al. Naringenin alleviates renal ischemia reperfusion injury by suppressing ER stress-induced pyroptosis and apoptosis through activating Nrf2/HO-1 signaling pathway. Oxid Med Cell Longev. 2022;2022:5992436. doi:10.1155/2022/5992436
  • He Y, Wang S, Sun H, et al. Naringenin ameliorates myocardial injury in STZ-induced diabetic mice by reducing oxidative stress, inflammation and apoptosis via regulating the Nrf2 and NF-κB signaling pathways. Front Cardiovasc Med. 2022;9:946766. doi:10.3389/fcvm.2022.946766
  • Teng J, Li Y, Yu W, et al. Naringenin, a common flavanone, inhibits the formation of AGEs in bread and attenuates AGEs-induced oxidative stress and inflammation in RAW264.7 cells. Food Chem. 2018;269:35–42. doi:10.1016/j.foodchem.2018.06.126
  • Sarmah S, Goswami A, Kumar Belwal V, et al. Mitigation of ribose and glyoxal induced glycation, AGEs formation and aggregation of human serum albumin by citrus fruit phytochemicals naringin and naringenin: an insight into their mechanism of action. Food Res Int. 2022;157:111358. doi:10.1016/j.foodres.2022.111358
  • Liu G, Xia Q, Lu Y, et al. Influence of quercetin and its methylglyoxal adducts on the formation of α-dicarbonyl compounds in a lysine/glucose model system. J Agric Food Chem. 2017;65:2233–2239. doi:10.1021/acs.jafc.6b05811
  • Ofosu FK, Elahi F, Daliri EB, et al. Phenolic profile, antioxidant, and antidiabetic potential exerted by millet grain varieties. Antioxidants. 2020;9:254. doi:10.3390/antiox9030254
  • Liu X, Wang N, Fan S, et al. The citrus flavonoid naringenin confers protection in a murine endotoxaemia model through AMPK-ATF3-dependent negative regulation of the TLR4 signalling pathway. Sci Rep. 2016;6:39735. doi:10.1038/srep39735
  • Yang Q, Gao L, Hu X, et al. Smad3-Targeted therapy protects against cisplatin-induced AKI by attenuating programmed cell death and inflammation via a NOX4-dependent mechanism. Kidney Dis. 2021;7:372–390. doi:10.1159/000512986
  • Al Dosari DI, Ahmed MM, Al Rejaie SS, et al. Flavonoid naringenin attenuates oxidative stress, apoptosis and improves neurotrophic effects in the diabetic Rat retina. Nutrients. 2017;9:1161. doi:10.3390/nu9101161
  • Wojnar W, Zych M, Kaczmarczyk Sedlak I. Antioxidative effect of flavonoid naringenin in the lenses of type 1 diabetic rats. Biomed Pharmacother. 2018;108:974–984. doi:10.1016/j.biopha.2018.09.092
  • López-Chillón MT, Carazo-Díaz C, Prieto-Merino D, et al. Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects. Clin Nutr. 2019 Apr;38(2):745–752. doi:10.1016/j.clnu.2018.03.00
  • Lather A, Sharma S, Khatkar A. Naringenin derivatives as glucosamine-6-phosphate synthase inhibitors: synthesis, antioxidants, antimicrobial, preservative efficacy, molecular docking and in silico ADMET analysis. BMC Chem. 2020 Jun 19;14(1):41. doi:10.1186/s13065-020-00693-3
  • Rebello CJ, Beyl RA, Lertora JJL, et al. Safety and pharmacokinetics of naringenin: A randomized, controlled, single-ascending-dose clinical trial. Diabetes Obes Metab. 2020;22:91–98. doi:10.1111/dom.13868
  • Naeini F, Namkhah Z, Tutunchi H, et al. Effects of naringenin supplementation on cardiovascular risk factors in overweight/obese patients with nonalcoholic fatty liver disease: a pilot double-blind, placebo-controlled, randomized clinical trial. Eur J Gastroenterol Hepatol. 2022;34:345–353. doi:10.1097/meg.0000000000002323
  • Naeini F, Namkhah Z, Tutunchi H, et al. Effects of naringenin supplementation in overweight/obese patients with non-alcoholic fatty liver disease: study protocol for a randomized double-blind clinical trial. Trials. 2021;22:801. doi:10.1186/s13063-021-05784-7
  • Habauzit V, Verny MA, Milenkovic D, et al. Flavanones protect from arterial stiffness in postmenopausal women consuming grapefruit juice for 6 mo: a randomized, controlled, crossover trial. Am J Clin Nutr. 2015;102:66–74. doi:10.3945/ajcn.114.104646