1,132
Views
123
CrossRef citations to date
0
Altmetric
Review

Antimicrobial peptides (AMPs) as drug candidates: a patent review (2003–2015)

&
Pages 689-702 | Received 12 Feb 2016, Accepted 05 Apr 2016, Published online: 22 Apr 2016

References

  • Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003 Mar;55(1):27–55.
  • Phoenix DA, Dennison SR, Harris F, editors. Antimicrobial peptides: their history, evolution, and functional promiscuity. Weinheim (Germany): Wiley-VCH Verlag GmbH & Co. KGaA; 2013.
  • Dubos RJ. Studies on a bactericidal agent extracted from a soil bacillus: I. Preparation of the agent. Its activity in vitro. J Exp Med. 1939 Jun 30;70(1):1–10.
  • Steiner H, Hultmark D, Engström A, et al. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981 Jul 16;292(5820):246–248.
  • Zasloff M, Martin B, Chen HC. Antimicrobial activity of synthetic magainin peptides and several analogues. Proc Natl Acad Sci U S A. 1988 Feb;85(3):910–913.
  • Maccari G, Nifosi R, Di Luca M. Rational development of antimicrobial peptides for therapeutic use: design and production of highly active compounds. In: Medez-Vilas A, editor. Microbial pathogens and strategies for combating them: science, technology and education. Badajoz (Spain): Formatex Research Center; 2013. ISBN-13, Vol. 2: 978-84-942134-0-3. http://www.formatex.info/microbiology4/vol2.html
  • Yount NY, Yeaman MR. Emerging themes and therapeutic prospects for anti-infective peptides. Annu Rev Pharmacol Toxicol. 2012;52:337–360.
  • Zaiou M. Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. J Mol Med (Berl). 2007 Apr;85(4):317–329.
  • Jenssen H, Hamill P, Hancock RE. Peptide antimicrobial agents. Clin Microbiol Rev. 2006 Jul;19(3):491–511.
  • Aoki W, Ueda M. Characterization of Antimicrobial Peptides toward the Development of Novel Antibiotics. Pharmaceuticals (Basel). 2013;6(8):1055–1081.
  • Epand RM, Vogel HJ. Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta. 1999 Dec 15;1462(1–2):11–28.
  • Cabiaux V, Agerberth B, Johansson J, et al. Secondary structure and membrane interaction of PR-39, a Pro+Arg-rich antibacterial peptide. Eur J Biochem. 1994 Sep 15;224(3):1019–1027.
  • Yount NY, Yeaman MR. Immunocontinuum: perspectives in antimicrobial peptide mechanisms of action and resistance. Protein Pept Lett. 2005 Jan;12(1):49–67.
  • Toke O. Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers. 2005;80(6):717–735.
  • Hancock RE, Chapple DS. Peptide antibiotics. Antimicrob Agents Chemother. 1999 Jun;43(6):1317–1323.
  • Cudic M, Otvos L Jr. Intracellular targets of antibacterial peptides. Curr Drug Targets. 2002 Apr;3(2):101–106.
  • Otvos L Jr. Antibacterial peptides and proteins with multiple cellular targets. J Pept Sci. 2005 Nov;11(11):697–706.
  • Scott MG, Davidson DJ, Gold MR, et al. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol. 2002;169(7):3883–3891.
  • Turner J, Cho Y, Dinh NN, et al. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother. 1998;42(9):2206–2214.
  • Lee -C-C, Sun Y, Qian S, et al. Transmembrane pores formed by human antimicrobial peptide LL-37. Biophys J. 2011;100(7):1688–1696.
  • Bowdish DME, Davidson DJ, Lau YE, et al. Impact of LL-37 on anti-infective immunity. J Leukoc Biol. 2005;77(4):451–459.
  • Gallo R, Murakami M. Human cathelicidin antimicrobial peptides. WO2005040192 A3. 2005.
  • Ståhle-Bäckdahl M, Heilborn J, Carlsson A, et al. Use of the cathelicidin LL-37 and derivatives therof for wound healing. US8012933 B2. 2011.
  • Frohm M, Agerberth B, Ahangari G, et al. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem. 1997 Jun 13;272(24):15258–15263.
  • Fox JL. Antimicrobial peptides stage a comeback. Nat Biotechnol. 2013 May;31(5):379–382.
  • Haisma EM, De Breij A, Chan H, et al. LL-37- derived peptides eradicate multidrug-resistant Staphylococcus aureus from thermally wounded human skin equivalents. Antimicrob Agents Chemother. 2014 Aug;58(8):4411–4419.
  • Nibbering PH, Hiemstra P, Drijfhout JW. Peptides antimicrobiens. WO2014182172 A1. 2014.
  • Zhang L, Falla TJ. Potential therapeutic application of host defense peptides. Methods Mol Biol. 2010;618:303–327.
  • Fritsche TR, Rhomberg PR, Sader HS, et al. Antimicrobial activity of omiganan pentahydrochloride tested against contemporary bacterial pathogens commonly responsible for catheter-associated infections. J Antimicrob Chemother. 2008 May;61(5):1092–1098.
  • Rubinchik E, Dugourd D, Algara T, et al. Antimicrobial and antifungal activities of a novel cationic antimicrobial peptide, omiganan, in experimental skin colonisation models. Int J Antimicrob Agents. 2009 Nov;34(5):457–461.
  • Krieger TJ, Taylor R, Erfle D, et al. Compositions and methods for treating infections using cationic peptides alone or in combination with antibiotics. US6503881 B2. 2003.
  • Krieger TJ, Mcnicol PJ, Fraser JR. Antimicrobial cationic peptides and formulations thereof. WO2003015809 A3. 2004.
  • Hancock REW, Hilpert K, Cherkasov A, et al. Small cationic antimicrobial peptides. WO2008022444 A1. 2008.
  • Kougo Y, Moriyama M, Nagai K, et al. Antipylori agent. EP0935965 A1. 1999.
  • Yang D, Biragyn A, Kwak LW, et al. Mammalian defensins in immunity: more than just microbicidal. Trends Immunol. 2002 Jun;23(6):291–296.
  • Yang D, Chertov O, Oppenheim JJ. Participation of mammalian defensins and cathelicidins in anti-microbial immunity: receptors and activities of human defensins and cathelicidin (LL-37). J Leukoc Biol. 2001 May;69(5):691–697.
  • Stange E, Schroeder B, Wehkamp J Antimicrobial peptides. US8012933 B2. 2015.
  • Lehrer RI, Cole AM, Selsted ME. θ-Defensins: cyclic peptides with endless potential. J Biol Chem. 2012 Aug 3;287(32):27014–27019.
  • Yasin B, Wang W, Pang M, et al. Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J Virol. 2004 May;78(10):5147–5156.
  • Bradley KA, Lehrer RI, Wang W, et al. Retrocyclins: antiviral and antimicrobial peptides. WO2007044998 A1. 2007.
  • Lehrer RI, Waring AJ, Cole AM, et al. Retrocyclins: antiviral and antimicrobial peptides. US7718610 B2. 2010.
  • Münk C, Wei G, Yang OO, et al. The theta-defensin, retrocyclin, inhibits HIV-1 entry. AIDS Res Hum Retroviruses. 2003 Oct;19(10):875–881.
  • Gidalevitz D, Ishitsuka Y, Muresan AS, et al. Interaction of antimicrobial peptide protegrin with biomembranes. Proc Natl Acad Sci U S A. 2003 May 27;100(11):6302–6307.
  • Sokolov Y, Mirzabekov T, Martin DW, et al. Membrane channel formation by antimicrobial protegrins. Biochim Biophys Acta. 1999 Aug 20;1420(1–2):23–29.
  • Steinberg DA, Hurst MA, Fujii CA, et al. Protegrin-1: a broad- spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob Agents Chemother. 1997 Aug;41(8):1738–1742.
  • Lou KJ, Writer S. A new spin on protegrin. SciBX. 2010;3(9):1–3. doi:10.1038/scibx.2010.265. Nature Publishing Group. http://www.biocentury.com/Archives/innovations/2010-03-04
  • Srinivas N, Jetter P, Ueberbacher BJ, et al. Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science. 2010 Feb 19;327(5968):1010–1013.
  • Wang Y, Moskowitz H, Liu X, et al. Polymer conjugates of protegrin peptides. US20110171161 A1. 2011.
  • Rollins-Smith LA, Reinert LK, O’Leary CJ, et al. Antimicrobial peptide defenses in amphibian skin. Integr Comp Biol. 2005 Jan;45(1):137–142.
  • Rinaldi AC. Antimicrobial peptides from amphibian skin: an expanding scenario. Curr Opin Chem Biol. 2002 Dec;6(6):799–804.
  • Conlon JM, Al-Ghaferi N, Abraham B, et al. Strategies for transformation of naturally- occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents. Methods. 2007 Aug;42(4):349–357.
  • Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5449–5453.
  • Ge Y, MacDonald DL, Holroyd KJ, et al. In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob Agents Chemother. 1999 Apr;43(4):782–788.
  • Ren LL, Li J, Xu X, et al. Odorrana grahami antimicrobial peptides and application thereof CN1927880 A. 2007.
  • Song Y, Meng Q, Xuya Y, et al. Rana nigromaculata antimicrobial peptide as well as gene and application thereof Patent CN102250216 A. 2011.
  • Song S, Jin L, Liu J, et al. Antimicrobial peptide separated from skin of Northeast China brown frog and applications in antibacterials. CN101333247 B. 2012.
  • Jung SJ, Kim HE, Lee BJ, et al. Analogues of antimicrobial peptide synthesized and produced from gaegurin 5. WO 2005070956 A1. 2005.
  • Ribeiro De Paiva G, Bloch Junior C, Jr DAL, et al. Broad spectrum antibiotic peptides of the phylloseptin family. EP 1412380 B1. 2007.
  • Jiang Z, Hodges R, Gera L, et al. Dermaseptin-type and piscidin-type antimicrobial peptides. WO2015112980 A2. 2015.
  • Ladram A, Oury B, Sereno D, et al. Analogues of temporin-SHa and uses thereof. EP 2853538 A1. 2013.
  • Casteels-Josson K, Capaci T, Casteels P, et al. Apidaecin multipeptide precursor structure: a putative mechanism for amplification of the insect antibacterial response. Embo J. 1993 Apr;12(4):1569–1578.
  • Li W-F, Ma G-X, Zhou X-X. Apidaecin-type peptides: biodiversity, structure-function relationships and mode of action. Peptides. 2006 Sep;27(9):2350–2359.
  • Hoffmann R, Czihal P Antibiotic peptides. WO2009013262 A1. 2009.
  • Hoffmann R, Berthold N, Nollmann F. Modified antibiotic peptides having variable systemic release. US20140309161 A1. 2014.
  • Acosta J, Montero V, Carpio Y, et al. Cloning and functional characterization of three novel antimicrobial peptides from tilapia (Oreochromis niloticus). Aquaculture. 2013;372-375:9–18.
  • Acosta AJ, Estrada GMP. Amino acid sequences for controlling pathogens. US20140294871 A1. 2013.
  • Acosta J, Carpio Y, Valdés I, et al. Co-administration of tilapia alpha-helical antimicrobial peptides with subunit antigens boost immunogenicity in mice and tilapia (Oreochromis niloticus). Vaccine. 2014 Jan 3;32(2):223–229.
  • Hains D, Schwaderer A, Wang H. Rnase 7 antimicrobial peptides. WO2013158773 A3. 2013.
  • Spencer JD, Schwaderer AL, Dirosario JD, et al. Ribonuclease 7 is a potent antimicrobial peptide within the human urinary tract. Kidney Int. 2011 Jul;80(2):174–180.
  • Wang H, Schwaderer AL, Kline J, et al. Contribution of structural domains to the activity of ribonuclease 7 against uropathogenic bacteria. Antimicrob Agents Chemother. 2013 Feb;57(2):766–774.
  • Shih C, Chen HL, Su PY. Antimicrobial peptides derived from hepatitis b virus core protein arginine-rich domain. WO2014124047 A1. 2014.
  • Birnbaum F, Nassal M. Hepatitis B virus nucleocapsid assembly: primary structure requirements in the core protein. J Virol. 1990 Jul;64(7):3319–3330.
  • Chen HL, Su PY, Chang YS, et al. Identification of a novel antimicrobial peptide from human hepatitis B virus core protein arginine-rich domain (ARD). PLoS Pathog. 2013;9(6):e1003425.
  • Song PI, Armstrong C, Ryu S, et al. Methods of use for an antimicrobial peptide. WO2014152437 A2. 2014.
  • Bylund J, Christophe T, Boulay F, et al. Proinflammatory activity of a cecropin-like antibacterial peptide from Helicobacter pylori. Antimicrob Agents Chemother. 2001 Jun;45(6):1700–1704.
  • Park SC, Kim MH, Hossain MA, et al. Amphipathic alpha-helical peptide, HP (2-20), and its analogues derived from Helicobacter pylori: pore formation mechanism in various lipid compositions. Biochim Biophys Acta. 2008 Jan;1778(1):229–241.
  • Ross P, O’shea E, Hill C. Anitmicrobial peptide produced by intestinal lactobacillus salivarius. WO2013014293 A1. 2013.
  • Messaoudi S, Manai M, Kergourlay G, et al. Lactobacillus salivarius: bacteriocin and probiotic activity. Food Microbiol. 2013 Dec;36(2):296–304.
  • Martin R, Jimenez E, Olivares M, et al. Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother-child pair. Int J Food Microbiol. 2006 Oct 15;112(1):35–43.
  • Arribas B, Garrido-Mesa N, Peran L, et al. The immunomodulatory properties of viable Lactobacillus salivarius ssp. salivarius CECT5713 are not restricted to the large intestine. Eur J Nutr. 2012 Apr;51(3):365–374.
  • Gunzer F, Zschuettig A, Zimmermann K. Bacterially formed microcin s, a new antimicrobial peptide, effective against pathogenic microorganisms, e.g. enterohemorrhagic escherichia coli (ehec). WO2013024066 A1. 2013.
  • Chiuchiolo MJ, Delgado MA, Farías RN, et al. Growth-phase-dependent expression of the cyclopeptide antibiotic microcin J25. J Bacteriol. 2001 Mar;183(5):1755–1764.
  • Rebuffat S. Microcins in action: amazing defence strategies of Enterobacteria. Biochem Soc Trans. 2012 Dec 1;40(6):1456–1462.
  • Zschuttig A, Zimmermann K, Blom J, et al. Identification and characterization of microcin S, a new antibacterial peptide produced by probiotic Escherichia coli G3/10. PLoS One. 2012;7(3):e33351.
  • Hilpert K, Mikut R, Ruden S. Antimicrobial peptides for treatment of infectious diseases. WO2013053772 A1. 2013.
  • Jang SA, Kim DJ, Kim SC, et al. Novel use of antimicrobial peptides in regeneration of skin cells. WO2012046922 A1. 2012.
  • Strom M, Hansen T, Havelkova M, et al. Therapeutic peptides. WO2011051692 A1. 2011.
  • Zhang L, Carmichael R. Short antimicrobial lipopeptides. WO2013142088 A1. 2013.
  • Brzoska T, Luger TA, Maaser C, et al. Alpha-melanocyte-stimulating hormone and related tripeptides: biochemistry, antiinflammatory and protective effects in vitro and in vivo, and future perspectives for the treatment of immune-mediated inflammatory diseases. Endocr Rev. 2008 Aug;29(5):581–602.
  • Luger TA, Brzoska T. Alpha-MSH related peptides: a new class of anti-inflammatory and immunomodulating drugs. Ann Rheum Dis. 2007 Nov;66Suppl 3:iii52–5.
  • Eckert RH, Yarbrough DK, Shi W, et al. Selectively targeted antimicrobial peptides and the use thereof. WO2008030988 A2 2008.
  • Altman S, Bothwell A, Mamoum CB, et al. Antimicrobial compositions and methods of use thereof. WO2013044116. 2013.
  • Collins JJ, Koeris M, Lu TKT, et al. Bacteriophages expressing antimicrobial peptides and uses thereof. WO2010141135 A2. 2010.
  • Willcox MDP, Kumar N, Cole N, et al. Antimicrobial peptides and uses thereof. WO2013076666 A1. 2013.
  • Jenssen H, Hancock RE. Therapeutic potential of HDPs as immunomodulatory agents. Methods Mol Biol. 2010;618:329–347.
  • Falagas ME, Kasiakou SK, Tsiodras S, et al. The use of intravenous and aerosolized polymyxins for the treatment of infections in critically ill patients: a review of the recent literature. Clin Med Res. 2006;4(2):138–146.
  • Hamzeh-Mivehroud M, Alizadeh AA, Morris MB, et al. Phage display as a technology delivering on the promise of peptide drug discovery. Drug Discov Today. 2013;18(23–24):1144–1157.
  • Craik DJ, Fairlie DP, Liras S, et al. The future of peptide-based drugs. Chem Biol Drug Des. 2013 Jan;81(1):136–147.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.