519
Views
51
CrossRef citations to date
0
Altmetric
Review

Vitamin D receptor 2016: novel ligands and structural insights

, , &
Pages 1291-1306 | Received 23 May 2016, Accepted 20 Jul 2016, Published online: 12 Aug 2016

References

  • Tremezaygues L, Sticherling M, Pfohler C, et al. Cutaneous photosynthesis of vitamin D: an evolutionary highly-conserved endocrine system that protects against environmental hazards including UV-radiation and microbial infections. Anticancer Res. 2006;26:2743–2748.
  • Bouillon R, Suda T. Vitamin D: calcium and bone homeostasis during evolution. BoneKEy Reports. 2014;3:480.
  • Feldman D, Krishnan AV, Swami S, et al. The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer. 2014;14:342–357.
  • Chun RF, Liu PT, Modlin RL, et al. Impact of vitamin D on immune function: lessons learned from genome-wide analysis. Front Physiol. 2014;5:151.
  • Heikkinen S, Väisänen S, Pehkonen P, et al. Nuclear hormone 1α,25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of vdr chromatin occupancy. Nucleic Acids Res. 2011;39:9181–9193.
  • Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (camp) gene is a direct target of the vitamin d receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. Faseb J. 2005;19:1067–1077.
  • Verstuyf A, Carmeliet G, Bouillon R, et al. Vitamin D: a pleiotropic hormone. Kidney Int. 2010;78:140–145.
  • Bouillon R, Okamura WH, Norman AW. Structure-function relationships in the vitamin D endocrine system. Endocr Rev. 1995;16:200–257.
  • Haussler MR, Haussler CA, Jurutka PW, et al. The vitamin D hormone and its nuclear receptor: molecular actions and disease states. J Endocrinol. 1997;154(Suppl):S57–S73.
  • Molnár F, Peräkylä M, Carlberg C. Vitamin D receptor agonists specifically modulate the volume of the ligand-binding pocket. J Biol Chem. 2006;281:10516–10526.
  • Carlberg C, Campbell MJ. Vitamin D receptor signaling mechanisms: integrated actions of a well-defined transcription factor. Steroids. 2013;78:127–136.
  • Carlberg C. Mechanisms of nuclear signalling by vitamin D3. Interplay with retinoid and thyroid hormone signalling. Eur J Biochem. 1995;231:517–527.
  • Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily: the second decade. Cell. 1995;83:835–839.
  • Nagy L, Schwabe JW. Mechanism of the nuclear receptor molecular switch. Trends Biochem Sci. 2004;29:317–324.
  • Molnár F. Structural considerations of vitamin D signaling. Front Physiol. 2014;5:191.
  • Seuter S, Neme A, Carlberg C. Epigenome-wide effects of vitamin D and their impact on the transcriptome of human monocytes involve ctcf. Nucleic Acids Res. 2016;44:4090–4104.
  • Carlberg C, Mouriño A. New vitamin D receptor ligands. Expert Opin Ther Patents. 2003;13:761–772.
  • Carlberg C, Molnár F, Mourino A. Vitamin D receptor ligands: the impact of crystal structures. Expert Opin Ther Patents. 2012;22:417–435.
  • Takada I, Makishima M. Therapeutic application of vitamin D receptor ligands: an updated patent review. Expert Opin Ther Patents. 2015;25:1373–1383.
  • Escriva H, Bertrand S, Laudet V. The evolution of the nuclear receptor superfamily. Essays Biochem. 2004;40:11–26.
  • Makishima M, Lu TT, Xie W, et al. Vitamin D receptor as an intestinal bile acid sensor. Science. 2002;296:1313–1316.
  • Masuno H, Ikura T, Morizono D, et al. Crystal structures of complexes of vitamin D receptor ligand-binding domain with lithocholic acid derivatives. J Lipid Res. 2013;54:2206–2213.
  • Meyer-Luehmann M, Spires-Jones TL, Prada C, et al. Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature. 2008;451:720–724.
  • Belorusova AY, Eberhardt J, Potier N, et al. structural insights into the molecular mechanism of vitamin D receptor activation by lithocholic acid involving a new mode of ligand recognition. J Med Chem. 2014;57:4710–4719.
  • Carlberg C. Molecular basis of the selective activity of vitamin D analogues. J Cell Biochem. 2003;88:274–281.
  • Rochel N, Wurtz JM, Mitschler A, et al. Crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell. 2000;5:173–179.
  • Carlberg C, Molnár F. Current status of vitamin D signaling and its therapeutic applications. Curr Top Med Chem. 2012;12:528–547.
  • Plum LA, DeLuca HF. Vitamin D, disease and therapeutic opportunities. Nat Rev Drug Discov. 2010;9:941–955.
  • Leyssens C, Verlinden L, Verstuyf A. The future of vitamin D analogs. Front Physiol. 2014;5:122.
  • Lu Y, Chen J, Janjetovic Z, et al. Design, synthesis, and biological action of 20R-hydroxyvitamin D3. J Med Chem. 2012;55:3573–3577.
  • Lin Z, Marepally SR, Ma D, et al. Chemical synthesis and biological activities of 20S,24S/R-dihydroxyvitamin D3 epimers and their 1α-hydroxyl derivatives. J Med Chem. 2015;58:7881–7887.
  • Liu C, Zhao GD, Mao X, et al. Synthesis and biological evaluation of 1α,25-dihydroxyvitamin D3 analogues with aromatic side chains attached at C-17. Eur J Med Chem. 2014;85:569–575.
  • Okamoto R, Delansorne R, Wakimoto N, et al. Inecalcitol, an analog of 1α,25(OH)2D3, induces growth arrest of androgen-dependent prostate cancer cells. Int J Cancer. 2012;130:2464–2473.
  • Laplace DR, Verbraeken B, Van Hecke K, et al., Total synthesis of (±)-frondosin B and (+/-)-5-epi-liphagal by using a concise (4+3) cycloaddition approach. Chemistry. 2014;20:253–262.
  • Otero R, Seoane S, Sigueiro R, et al. Carborane-based design of a potent vitamin D receptor agonist. Chem Sci. 2016;7:1033.
  • Bolla NR, Corcoran A, Yasuda K, et al. Synthesis and evaluation of geometric analogs of 1α,25-dihydroxyvitamin D2 as potential therapeutics. J Steroid Biochem Mol Biol. http://dx.doi.org/10.1016/j.jsbmb.2015.08.025.
  • Corcoran A, Bermudez MA, Seoane S, et al. Biological evaluation of new vitamin D2 analogues. J Steroid Biochem Mol Biol. http://dx.doi.org/10.1016/j.jsbmb.2015.09.033.
  • Herdick M, Bury Y, Quack M, et al. Response element- and coactivator-mediated conformational change of the vitamin D3 receptor permits sensitive interaction with agonists. Mol Pharmacol. 2000;57:1206–1217.
  • Maehr H, Rochel N, Lee HJ, et al. Diastereotopic and deuterium effects in Gemini. J Med Chem. 2013;56:3878–3888.
  • Ciesielski F, Rochel N, Moras D. Adaptability of the vitamin d nuclear receptor to the synthetic ligand Gemini: remodelling the LBP with one side chain rotation. J Steroid Biochem Mol Biol. 2007;103:235–242.
  • Huet T, Maehr H, Lee H, et al. Structure function study of gemini derivatives with two different side chains at C-20, Gemini-0072 and Gemini-0097. Med Chem Comm. 2011;8:424–429.
  • Kulesza U, Plum LA, DeLuca HF, et al. Novel 9-alkyl- and 9-alkylidene-substituted 1α,25-dihydroxyvitamin D3 analogues: synthesis and biological examinations. J Med Chem. 2015;58:6237–6247.
  • Sikervar V, Fleet JC, Fuchs PL. A general approach to the synthesis of enantiopure 19-nor-vitamin D3 and its C-2 phosphate analogs prepared from cyclohexadienyl sulfone. Chem Commun (Camb). 2012;48:9077–9079.
  • Glebocka A, Chiellini G. A-ring analogs of 1,25-dihydroxyvitamin D3. Arch Biochem Biophys. 2012;523:48–57.
  • Sawada D, Tsukuda Y, Saito H, et al. Development of 14-epi-19-nortachysterol and its unprecedented binding configuration for the human vitamin D receptor. J Am Chem Soc. 2011;133:7215–7221.
  • Sawada D, Tsukuda Y, Saito H, et al. Synthesis of 14-epi-2α-hydroxypropoxy-1α,25-dihydroxy-19-nortachysterol and its hVDR binding. J Steroid Biochem Mol Biol. 2013;136:27–29.
  • Thomas E, Brion JD, Peyrat JF. Synthesis and preliminary biological evaluation of new antiproliferative aromatic analogues of 1α,25-dihydroxyvitamin D3. Eur J Med Chem. 2014;86:381–393.
  • Fujii S, Masuno H, Taoda Y, et al. Boron cluster-based development of potent nonsecosteroidal vitamin D receptor ligands: direct observation of hydrophobic interaction between protein surface and carborane. J Am Chem Soc. 2011;133:20933–20941.
  • Asou H, Koike M, Elstner E, et al. 19-nor vitamin-D analogs: a new class of potent inhibitors of proliferation and inducers of differentiation of human myeloid leukemia cell lines. Blood. 1998;92:2441–2449.
  • Ciesielski F, Sato Y, Chebaro Y, et al. Structural basis for the accommodation of bis- and tris-aromatic derivatives in vitamin D nuclear receptor. J Med Chem. 2012;55:8440–8449.
  • Sikervar V, Fuchs PL. Intramolecular methylation of an allyl sulfone via lithium alkoxyaluminate; application to the enantioselective synthesis of the cd ring of vitamin D3. Org Lett. 2012;14:2922–2924.
  • Chen Y, Ju T. Enantioselective synthesis of a key a-ring intermediate for the preparation of 1α,25-dihydroxyvitamin D3. Org Lett. 2011;13:86–89.
  • Sikervar V, Fleet JC, Fuchs PL. Fluoride-mediated elimination of allyl sulfones: application to the synthesis of a 2,4-dimethyl-A-ring vitamin D3 analogue. J Org Chem. 2012;77:5132–5138.
  • Yin Y-Z, Li J-P, Liu C, et al. Advances in the synthesis of a-ring 1,7-enyne synthons for active vitamin D3 analogues. Curr Org Synth. 2011;8:374–392.
  • Liu C, Yin Y-Z, Tang L-Q, et al. Progresses in the synthesis of A-ring phosphine oxide synthons for active vitamin D3 analogues. Curr Org Synth. 2012;9:1–25.
  • Wisconsin-Alumni-Research-Foundation. 2-alkylidene-19-nor-vitamin D compounds. WO41501. 1998.
  • Wisconsin-Alumni-Research-Foundation. N-cyclopropyl-(20R)-2-methylene-19,26,27-trinor-25-azavitamin D analogues and their uses. US309713. 2012.
  • Wisconsin-Alumni-Research-Foundation. 2-methylene-(22e)-25-hexanoyl-24-oxo-26,27-cyclo-22-dehydro-19-norvitamin D analogues. US5686. 2013.
  • Wisconsin-Alumni-Research-Foundation. 2-methylene-20(21)-dehydro-19,24,25,26,27-pentanor-vitamin D analogs. US178449. 2013.
  • Cytochroma, John-Hopkins-University. 1-deoxy analogues of vitamin D-related compounds. WO88209. 2011.
  • Celus-Pharmaceuticals. Vitamin D analogues for the treatment of a neurological disorder. US246061. 2015.
  • Extended-Biosciences. Vitamin D analogues for the treatment of a neurological disorder. US246061. 2015.
  • Nanjing-University-of-Science-and-Technology. 24,28-ene-1α-hydroxyl vitamin D derivatives and preparation method thereof. CN104693087. 2015.
  • Universidade-de-Santiago, Universidade-da-Coruña, Servicio-Galego-de-Saúde. Vitamin D analogues of pharmaceutical interest. WO2015/075291. 2015.
  • Moras D, Gronemeyer H. The nuclear receptor ligand-binding domain: structure and function. Curr Opin Cell Biol. 1998;10:384–391.
  • Molnár F, Matilainen M, Carlberg C. Structural determinants of the agonist-independent association of human peroxisome proliferator-activated receptors with coactivators. J Biol Chem. 2005;280:26543–26556.
  • Kupferschmidt K. Uncertain verdict as vitamin D goes on trial. Science. 2012;337:1476–1478.
  • Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1911–1930.
  • Carlberg C. Molecular approaches for optimizing vitamin D supplementation. Vitam Horm. 2016;100:255–271.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.