458
Views
14
CrossRef citations to date
0
Altmetric
Review

Peptides and peptidomimetics in the p53/MDM2/MDM4 circuitry - a patent review

, , , , &
Pages 1417-1429 | Received 20 May 2016, Accepted 02 Sep 2016, Published online: 20 Sep 2016

References

  • Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992;356:215–221.
  • Malkin D, Li FP, Strong LC, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233–1238.
  • Srivastava S, Zou ZQ, Pirollo K, et al. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature. 1990;348:747–749.
  • Malkin D. Li-Fraumeni syndrome and p53 in 2015: celebrating their silver anniversary. Clin Invest Med. 2016;39:E37–47.
  • Welcome – IARC TP53 database. 2016; [cited 2016 May]. Available from: http://p53.iarc.fr/
  • Wasylishen AR, Lozano G. Attenuating the p53 pathway in human cancers: many means to the same end. Cold Spring Harb Perspect Med. 2016;6:1–21.
  • Burgess A, Chia KM, Haupt S, et al. Clinical overview of MDM2/X-targeted therapies. Front Oncol. 2016 [2016 Jan 27]. DOI:10.3389/fonc.2016.00007
  • Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303:844–848.
  • Khoo KH, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov. 2014;13:217–236.
  • Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015;20:122–128.
  • Tsomaia N. Peptide therapeutics: targeting the undruggable space. Eur J Med Chem. 2015;94:459–470.
  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, et al. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64:1020–1037.
  • Torchilin V. Intracellular delivery of protein and peptide therapeutics. Drug Discov Today Technol. 2008;5:e95–e103.
  • Noble GT, Stefanick JF, Ashley JD, et al. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol. 2014;32:32–45.
  • Amin M, Mansourian M, Koning GA, et al. Development of a novel cyclic RGD peptide for multiple targeting approaches of liposomes to tumor region. J Control Release. 2015;220:308–315.
  • Liu M, Pazgier M, Li C, et al. A left-handed solution to peptide inhibition of the p53-MDM2 interaction. Angew Chem Int Ed Engl. 2010;49:3649–3652.
  • Liu M, Li C, Pazgier M, et al. D-peptide inhibitors of the p53-MDM2 interaction for targeted molecular therapy of malignant neoplasms. Proc Natl Acad Sci USA. 2010;107:14321–14326.
  • Zhan C, Zhao L, Wei X, et al. An ultrahigh affinity d-peptide antagonist of MDM2. J Med Chem. 2012;55:6237–6241.
  • Chee SM, Wongsantichon J, Soo Tng Q, et al. Structure of a stapled peptide antagonist bound to Nutlin-resistant MDM2. PLoS One. 2014;9:e104914.
  • Bernal F, Wade M, Godes M, et al. A stapled p53 helix overcomes HDMX-mediated suppression of p53. Cancer Cell. 2010;18:411–422.
  • Brown CJ, Quah ST, Jong J, et al. Stapled peptides with improved potency and specificity that activate p53. ACS Chem Biol. 2013;8:506–512.
  • Chang YS, Graves B, Guerlavais V, et al. Stapled alpha-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc Natl Acad Sci USA. 2013;110:E3445–54.
  • Kritzer JA, Lear JD, Hodsdon ME, et al. Helical beta-peptide inhibitors of the p53-hDM2 interaction. J Am Chem Soc. 2004;126:9468–9469.
  • Hintersteiner M, Kimmerlin T, Garavel G, et al. A highly potent and cellularly active beta-peptidic inhibitor of the p53/hDM2 interaction. Chembiochem. 2009;10:994–998.
  • Senatus PB, Li Y, Mandigo C, et al. Restoration of p53 function for selective Fas-mediated apoptosis in human and rat glioma cells in vitro and in vivo by a p53 COOH-terminal peptide. Mol Cancer Ther. 2006 Jan;5(1):20–28.
  • Lee JH, Kang E, Lee J, et al. Protein grafting of p53TAD onto a leucine zipper scaffold generates a potent HDM dual inhibitor. Nat Commun. 2014;5:3814.
  • Selivanova G, Iotsova V, Okan I, et al. Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nat Med. 1997;3:632–638.
  • Soragni A, Janzen DM, Johnson LM, et al. A designed inhibitor of p53 aggregation rescues p53 tumor suppression in ovarian carcinomas. Cancer Cell. 2016;29:90–103.
  • Cromm PM, Spiegel J, Grossmann TN. Hydrocarbon stapled peptides as modulators of biological function. ACS Chem Biol. 2015;10:1362–1375.
  • Schafmeister CE, Po J, Verdine GL. An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J Am Chem Soc. 2000;122:5891–5892.
  • Kim Y-W, Kutchukian PS, Verdine GL. Introduction of all-hydrocarbon i,i+3 staples into alpha-helices via ring-closing olefin metathesis. Org Lett. 2010;12:3046–3049.
  • Kim Y-W, Grossmann TN, Verdine GL. Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis. Nat Protoc. 2011;6:761–771.
  • Madden MM, Muppidi A, Li Z, et al. Synthesis of cell-permeable stapled peptide dual inhibitors of the p53-Mdm2/Mdmx interactions via photoinduced cycloaddition. Bioorg Med Chem Lett. 2011;21:1472–1475.
  • Zhao L, Wuyuan L. D‐peptide‐based drug discovery aided by chemical protein synthesis. Isr J Chem. 2011;51:868–875.
  • Frackenpohl J, Arvidsson PI, Schreiber JV, et al. The outstanding biological stability of beta- and gamma-peptides toward proteolytic enzymes: an in vitro investigation with fifteen peptidases. Chembiochem. 2001;2:445–455.
  • Raucher D, Ryu JS. Cell-penetrating peptides: strategies for anticancer treatment. Trends Mol Med. 2015;21:560–570.
  • Halazonetis T, Hartwig W, Tw I, et al. Peptides and peptidomimetics with structural similarity to human p53 that activate p53 function. WO1996025434 A1. 1996.
  • Hupp TR, Sparks A, Lane DP. Small peptides activate the latent sequence-specific DNA binding function of p53. Cell. 1995;83:237–245.
  • Yamada T, Mehta RR, Lekmine F, et al. A peptide fragment of azurin induces a p53-mediated cell cycle arrest in human breast cancer cells. Mol Cancer Ther. 2009;8:2947–2958.
  • Guida E, Bisso A, Fenollar-Ferrer C, et al. Peptide aptamers targeting mutant p53 induce apoptosis in tumor cells. Cancer Res. 2008;68:6550–6558.
  • Friedler A, Hansson LO, Veprintsev DB, et al. A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. Proc Natl Acad Sci USA. 2002;99:937–942.
  • Tal P, Eizenberger S, Cohen E, et al. Cancer therapeutic approach based on conformational stabilization of mutant p53 protein by small peptides. Oncotarget. 2016;7:11817–11837.
  • Yamada T, Goto M, Punj V, et al. Bacterial redox protein azurin, tumor suppressor protein p53, and regression of cancer. Proc Natl Acad Sci USA. 2002;99:14098–14103.
  • Punj V, Bhattacharyya S, Saint-Dic D, et al. Bacterial cupredoxin azurin as an inducer of apoptosis and regression in human breast cancer. Oncogene. 2004;23:2367–2378.
  • Yamada T, Hiraoka Y, Ikehata M, et al. Apoptosis or growth arrest: modulation of tumor suppressor p53’s specificity by bacterial redox protein azurin. Proc Natl Acad Sci USA. 2004;101:4770–4775.
  • Santini S, Bizzarri AR, Cannistraro S. Modelling the interaction between the p53 DNA-binding domain and the p28 peptide fragment of Azurin. J Mol Recognit. 2011;24:1043–1055.
  • Yamada T, Christov K, Shilkaitis A, et al. p28, a first in class peptide inhibitor of cop1 binding to p53. Br J Cancer. 2013;108:2495–2504.
  • Warso MA, Richards JM, Mehta D, et al. A first-in-class, first-in-human, phase I trial of p28, a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in patients with advanced solid tumours. Br J Cancer. 2013;108:1061–1070.
  • Lulla RR, Goldman S, Yamada T, et al. Phase 1 trial of p28 (NSC745104), a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in pediatric patients with recurrent or progressive central nervous system tumors: a pediatric brain tumor consortium study. Neuro Oncol. 2016;18:1319–1325.
  • Macchiarulo A, Giacchè N, Mancini F, et al. Alternative strategies for targeting mouse double minute 2 activity with small molecules: novel patents on the horizon? Expert Opin Ther Pat. 2011;21:287–294.
  • Kamal A, Mohammed AA, Shaik TB. p53-MDM2 inhibitors: patent review (2009-2010). Expert Opin Ther Pat. 2012 Feb;22(2):95–105.
  • Kussie PH, Gorina S, Marechal V, et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science. 1996;274:948–953.
  • Lin J, Chen J, Elenbaas B, et al. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 1994;8:1235–1246.
  • Madhumalar A, Lee HJ, Brown CJ, et al. Design of a novel MDM2 binding peptide based on the p53 family. Cell Cycle. 2009 Sep 1;8(17):2828–2836.
  • Bernal F, Tyler AF, Korsmeyer SJ, et al. Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J Am Chem Soc. 2007;129:2456–2457.
  • Shiheido H, Takashima H, Doi N, et al. mRNA display selection of an optimized MDM2-binding peptide that potently inhibits MDM2-p53 interaction. PLoS One. 2011;6:e17898.
  • Pellegrino M, Mancini F, Luca R, et al. Targeting the MDM2/MDM4 interaction interface as a promising approach for p53 reactivation therapy. Cancer Res. 2015;75:4560–4572.
  • Hoppmann C, Wang L. Proximity-enabled bioreactivity to generate covalent peptide inhibitors of p53-MDM4. Chem Commun (Camb). 2016;52:5140–5143.
  • Kritzer JA, Stephens OM, Guarracino DA, et al. Beta-peptides as inhibitors of protein-protein interactions. Bioorg Med Chem. 2005;13:11–16.
  • Nagata T, Shirakawa K, Kobayashi N, et al. Structural basis for inhibition of the MDM2: p53interaction by an optimized MDM2-binding peptide selected with mRNA display. PLoS One. 2014;9:e109163.
  • Pazgier M, Liu M, Zou G, et al. Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proc Natl Acad Sci USA. 2009;106:4665–4670.
  • Schumacher TN, Mayr LM, Minor DL, et al. Identification of D-peptide ligands through mirror-image phage display. Science. 1996;271:1854–1857.
  • Moretti F. Novel insights about the MDM2/MDM4 heterodimer. Mol Cel Oncol. 2016;3:e1066923.
  • Kawai H, Lopez-Pajares V, Kim MM, et al. RING domain-mediated interaction is a requirement for MDM2’s E3 ligase activity. Cancer Res. 2007;67:6026–6030.
  • Linke K, Mace PD, Smith CA, et al. Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death Differ. 2008;15:841–848.
  • Shi Y, Nikulenkov F, Zawacka-Pankau J, et al. ROS-dependent activation of JNK converts p53 into an efficient inhibitor of oncogenes leading to robust apoptosis. Cell Death Differ. 2014;21:612–623.
  • Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579–591.
  • Shvarts A, Steegenga WT, Riteco N, et al. MDMX: a novel p53-binding protein with some functional properties of MDM2. Embo J. 1996;15:5349–5357.
  • Wade M, Wang YV, Wahl GM. The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol. 2010;20:299–309.
  • Wade M, Wahl GM. Targeting MDM2 AND MDMX in cancer therapy: better living through medicinal chemistry? Mol Cancer Res. 2009;7:1–11.
  • Joseph TL, Madhumalar A, Brown CJ, et al. Differential binding of p53 and Nutlin to MDM2 and MDMX: computational studies. Cell Cycle. 2010;9:1167–1181.
  • Macchiarulo A, Giacche N, Carotti A, et al. Expanding the horizon of chemotherapeutic targets: from MDM2 to MDMX (MDM4). Med Chem Comm. 2011;26:455–465.
  • Marine JC, Jochemsen AG. MDMX (MDM4), a promising target for p53 reactivation therapy and beyond. Cold Spring Harb Perspect Med. 2016;6:pii: a026237.
  • Zak K, Pecak A, Rys B, et al. MDM2 AND MDMX inhibitors for the treatment of cancer: a patent review (2011-present). Expert Opin Ther Pat. 2013;23:425–448.
  • Hu B, Gilkes DM, Chen J. Efficient p53 activation and apoptosis by simultaneous disruption of binding to MDM2 and MDMX. Cancer Res. 2007;67:8810–8817.
  • Bottger V, Bottger A, Garcia-Echeverria C, et al. Comparative study of the p53-mdm2 and p53-MDMX interfaces. Oncogene. 1999;18:189–199.
  • Phan J, Li Z, Kasprzak A, et al. Structure-based design of high affinity peptides inhibiting the interaction of p53 with MDM2 and MDMX. J Biol Chem. 2010;285:2174–2183.
  • Chang YS, Graves B, Guerlavais V, et al. Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc Natl Acad Sci USA. 2013;110:E3445–54.
  • Aileron Therapeutics, Inc., Guerlavais V, Elkin C, Hm N, et al. Inventor peptidomimetics macrocycles. WO2013123266A1. 2013.
  • Gonzalez L, Woolfson DN, Alber T. Buried polar residues and structural specificity in the GCN4 leucine zipper. Nat Struct Biol. 1996;3:1011–1018.
  • Ho A, Schwarze SR, Mermelstein SJ, et al. Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo. Cancer Res. 2001;61:474–477.
  • Safety study of ALRN-6924 in patients with advanced solid tumors or lymphomas – full text view – ClinicalTrials.gov. 2016. Available from: https://clinicaltrials.gov/ct2/show/NCT02264613?term=NCT02264613&rank=1
  • Parrales A, Iwakuma T. Targeting oncogenic mutant p53 for cancer therapy. Front Oncol. 2015;5:288, eCollection 2015.
  • Hong B, Van Den Heuvel AP, Prabhu VV, et al. Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities. Curr Drug Targets. 2014;15:80–89.
  • Bykov VJ, Wiman KG. Mutant p53 reactivation by small molecules makes its way to the clinic. FEBS Lett. 2014;588:2622–2627.
  • Joerger AC, Fersht AR. Structural biology of the tumor suppressor p53. Annu Rev Biochem. 2008;77:557–582.
  • Kern SE, Pietenpol JA, Thiagalingam S, et al. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science. 1992;256:827–830.
  • Dittmer D, Pati S, Zambetti G, et al. Gain of function mutations in p53. Nat Genet. 1993;4:42–46.
  • Kim E, Deppert W. Transcriptional activities of mutant p53: when mutations are more than a loss. J Cell Biochem. 2004;93:878–886.
  • Di Agostino S, Cortese G, Monti O, et al. The disruption of the protein complex mutantp53/p73 increases selectively the response of tumor cells to anticancer drugs. Cell Cycle. 2008;7:3440–3447.
  • Selivanova G, Ryabchenko L, Jansson E, et al. Reactivation of mutant p53 through interaction of a C-terminal peptide with the core domain. Mol Cell Biol. 1999;19:3395–3402.
  • Bullock AN, Henckel J, Fersht AR. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy. Oncogene. 2000;19:1245–1256.
  • Martin AC, Facchiano AM, Cuff AL, et al. Integrating mutation data and structural analysis of the TP53 tumor-suppressor protein. Hum Mutat. 2002;19:149–164.
  • Levy CB, Stumbo AC, Ano Bom AP, et al. Co-localization of mutant p53 and amyloid-like protein aggregates in breast tumors. Int J Biochem Cell Biol. 2011;43:60–64.
  • Xu J, Reumers J, Couceiro JR, et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol. 2011;7:285–295.
  • Wang G, Fersht AR. First-order rate-determining aggregation mechanism of p53 and its implications. Proc Natl Acad Sci USA. 2012;109:13590–13595.
  • Goldschmidt L, Teng PK, Riek R, et al. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci USA. 2010;107:3487–3492.
  • Hay M, Thomas DW, Craighead JL, et al. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32:40–51.
  • Wei SJ, Joseph T, Sim AY, et al. In vitro selection of mutant HDM2 resistant to Nutlin inhibition. PLoS One. 2013;8:e62564.
  • Mancini F, Di Conza G, Monti O, et al. Puzzling over MDM4-p53 network. Int J Biochem Cell Biol. 2010;42:1080–1083.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.