563
Views
178
CrossRef citations to date
0
Altmetric
Review

Schiff bases in medicinal chemistry: a patent review (2010-2015)

, , , &
Pages 63-79 | Received 25 May 2016, Accepted 28 Sep 2016, Published online: 07 Nov 2016

References

  • Dutta B, Bag P, Adhikary B, et al. Efficient proton-templated synthesis of 18-to 38-membered tetraimino (amino) diphenol macrocyclic ligands: structural features and spectroscopic properties. J Org Chem. 2004;69(16):5419–5427.
  • Di Bernardo P, Zanonato P, Tamburini S, et al. Complexation behaviour and stability of Schiff bases in aqueous solution. The case of an acyclic diimino (amino) diphenol and its reduced triamine derivative. Dalton Trans. 2006;(39):4711–4721. Available from: http://pubs.rsc.org/en/Content/ArticleLanding/2006/DT/b604211b#!divAbstract
  • Kirdant A, Shelke V, Shankarwar S, et al. Kinetic study of hydrolysis of N-salicylidene-m-methyl aniline spectrophotometrically. J Chem Pharm Res. 2011;3:790–796.
  • Janz JM, Farrens DL. Assessing structural elements that influence Schiff base stability: mutants E113Q and D190N destabilize rhodopsin through different mechanisms. Vision Res. 2003;43(28):2991–3002.
  • Chohan ZH, Hernandes MZ, Sensato FR, et al. Sulfonamide–metal complexes endowed with potent anti-Trypanosoma cruzi activity. J Enzyme Inhib Med Chem. 2014;29(2):230–236.
  • Chohan ZH, Shad HA, Supuran CT. Synthesis, characterization and biological studies of sulfonamide Schiff’s bases and some of their metal derivatives. J Enzyme Inhib Med Chem. 2012;27(1):58–68.
  • Chohan ZH, Shad HA. Sulfonamide‐derived compounds and their transition metal complexes: synthesis, biological evaluation and X‐ray structure of 4‐bromo‐2‐[(E)‐{4‐[(3, 4‐dimethylisoxazol‐5 yl) sulfamoyl] phenyl} iminiomethyl] phenolate. Appl Organomet Chem. 2011;25(8):591–600.
  • Chohan ZH, Shad HA. Metal-based new sulfonamides: design, synthesis, antibacterial, antifungal, and cytotoxic properties. J Enzyme Inhib Med Chem. 2012;27(3):403–412.
  • Chohan ZH, Youssoufi MH, Jarrahpour A, et al. Identification of antibacterial and antifungal pharmacophore sites for potent bacteria and fungi inhibition: indolenyl sulfonamide derivatives. Eur J Med Chem. 2010;45(3):1189–1199.
  • Eroglu E. Some QSAR studies for a group of sulfonamide Schiff base as carbonic anhydrase CA II inhibitors. Int J Mol Sci. 2008;9(2):181–197.
  • Ming L-J, Epperson JD. Metal binding and structure–activity relationship of the metalloantibiotic peptide bacitracin. J Inorg Biochem. 2002;91(1):46–58.
  • Lehmann T, Topchiy E. Contributions of NMR to the understanding of the coordination chemistry and DNA Interactions of metallo-bleomycins. Molecules. 2013;18(8):9253–9277.
  • Sakai TT, Riordan JM, Kumar NG, et al. Studies on bleomycin-DNA and bleomycin-iron interactions. J Biomol Struct Dyn. 1983;1(3):809–827.
  • Oppenheimer NJ, Rodriguez LO, Hecht SM. Metal binding to modified bleomycins Zinc and ferrous complexes with an acetylated bleomycin. Biochemistry. 1980;19(17):4096–4103.
  • Murray V, Chen JK, Tanaka MM. The genome-wide DNA sequence specificity of the anti-tumour drug bleomycin in human cells. Mol Biol Rep. 2016;43(7):639–651
  • Hsu C-W, Kuo C-F, Chuang S-M, et al. Elucidation of the DNA-interacting properties and anticancer activity of a Ni (II)-coordinated mithramycin dimer complex. Biometals. 2013;26(1):1–12.
  • Anderberg PI, Harding MM, Lay PA. The effect of metal ions on the electrochemistry of the antitumor antibiotic streptonigrin. J Inorg Biochem. 2004;98(5):720–726.
  • Lahiri S, Takao T, Devi PG, et al. Association of aureolic acid antibiotic, chromomycin A3 with Cu2+ and its negative effect upon DNA binding property of the antibiotic. Biometals. 2012;25(2):435–450.
  • Fiallo M, Garnier-Suillerot A. Metal anthracycline complexes as a new class of anthracycline derivatives Palladium (II)-adriamycin and palladium (II)-daunorubicin complexes: physicochemical characteristics and antitumor activity. Biochemistry. 1986;25(4):924–930.
  • Anand R, Borghi F, Manoli F, et al. Host–guest interactions in Fe (III)-Trimesate MOF nanoparticles loaded with doxorubicin. J Phys Chem B. 2014;118(29):8532–8539.
  • Verma G, Marella A, Shaquiquzzaman M, et al. A review exploring biological activities of hydrazones. J Pharm Bioallied Sci. 2014;6(2):69.
  • Rollas S, Küçükgüzel SG. Biological activities of hydrazone derivatives. Molecules. 2007;12(8):1910–1939.
  • Kajal A, Bala S, Sharma N, et al. Therapeutic potential of hydrazones as anti-inflammatory agents. Int J Med Chem. 2014;2014:1-11. Available from: https://www.hindawi.com/journals/ijmc/2014/761030/
  • Kumar P, Narasimhan B. Hydrazides/hydrazones as antimicrobial and anticancer agents in the new millennium. Mini Rev Med Chem. 2013;13(7):971–987.
  • Robinson B. The fischer indole synthesis. Chem Rev. 1963;63(4):373–401.
  • Martín‐Zamora E, Ferrete A, Llera JM, et al. Studies on stereoselective [2+ 2] cycloadditions between N, N-dialkylhydrazones and ketenes. Chem Eur J. 2004;10(23):6111–6129.
  • Belskaya NP, Dehaen W, Bakulev VA. Synthesis and properties of hydrazones bearing amide, thioamide and amidine functions. Arkivoc. 2010;1:275–332.
  • Joshi SD, Kumar D, Dixit SR, et al. Synthesis, characterization and antitubercular activities of novel pyrrolyl hydrazones and their Cu-complexes. Eur J Med Chem. 2016;121:21–39.
  • Mandewale MC, Thorat B, Shelke D, et al. Synthesis and biological evaluation of new hydrazone derivatives of quinoline and their Cu (II) and Zn (II) complexes against Mycobacterium tuberculosis. Bioinorg Chem Appl. 2015;2015:1-14. Available from: https://www.hindawi.com/journals/bca/2015/153015/
  • Ferreira IP, Piló ED, Recio-Despaigne AA, et al. Bismuth (III) complexes with 2-acetylpyridine-and 2-benzoylpyridine-derived hydrazones: antimicrobial and cytotoxic activities and effects on the clonogenic survival of human solid tumor cells. Bioorg Med Chem. 2016;24(13):2988–2998.
  • Ferraz KS, Silva NF, da Silva JG, et al. Investigation on the pharmacological profile of 2, 6-diacetylpyridine bis (benzoylhydrazone) derivatives and their antimony (III) and bismuth (III) complexes. Eur J Med Chem. 2012;53:98–106.
  • Gawande PU, Mandlik P, Aswar A. Synthesis and characterization of Cr (III), Mn (III), Fe (III), VO (IV), Zr (IV) and UO2 (VI) complexes of schiff base derived from isonicotinoyl hydrazone. Indian J Pharm Sci. 2015;77(4):376.
  • Deng J, Gou Y, Chen W, et al. The Cu/ligand stoichiometry effect on the coordination behavior of aroyl hydrazone with copper (II): structure, anticancer activity and anticancer mechanism. Bioorg Med Chem. 2016;24(10):2190–2198.
  • Kajal A, Bala S, Kamboj S, et al. Schiff bases: a versatile pharmacophore. J Catal. 2013;2013:1–14.
  • Abu-Dief AM, Mohamed IM. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Seuf Univ J Appl Sci. 2015;4(2):119–133.
  • Kostova I, Saso L. Advances in research of Schiff-base metal complexes as potent antioxidants. Curr Med Chem. 2013;20(36):4609–4632.
  • Harney AS, Lee J, Meade TJ, et al. Targeted schiff base complexes. WO2010111257. 2010.
  • Harney AS, Lee J, Manus LM, et al. Targeted inhibition of Snail family zinc finger transcription factors by oligonucleotide-Co (III) Schiff base conjugate. Proc Natl Acad Sci. 2009;106(33):13667–13672.
  • Hartwig A. Zinc finger proteins as potential targets for toxic metal ions: differential effects on structure and function. Antioxid Redox Signal. 2001;3(4):625–634.
  • Louie AY, Meade TJ. A cobalt complex that selectively disrupts the structure and function of zinc fingers. Proc Natl Acad Sci. 1998 Jun 9;95(12):6663–6668.
  • Munro OQ, Akerman KJ, Akerman P. Gold complexes for use in the treatment of cancer. US20130090472. 2013.
  • Florea A-M, Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers. 2011;3(1):1351–1371.
  • Muhammad N, Guo Z. Metal-based anticancer chemotherapeutic agents. Curr Opin Chem Biol. 2014;19:144–153.
  • Hannon MJ. Metal-based anticancer drugs: from a past anchored in platinum chemistry to a post-genomic future of diverse chemistry and biology. Pure Appl Chem. 2007;79(12):2243–2261.
  • Finkelstein A, Walz D, Batista V, et al. Auranofin new oral gold compound for treatment of rheumatoid arthritis. Ann Rheum Dis. 1976;35(3):251–257.
  • Milacic V, Fregona D, Dou QP. Gold complexes as prospective metal-based anticancer drugs. Histol Histopathol. 2008;23(1):101–108.
  • Nardon C, Boscutti G, Fregona D. Beyond platinums: gold complexes as anticancer agents. Anticancer Res. 2014;34(1):487–492.
  • Sarkar FH, Dou QP, Padhye S. Novel analogs of curcumin and methods of use. WO2011142795. 2011.
  • Maheshwari RK, Singh AK, Gaddipati J, et al. Multiple biological activities of curcumin: a short review. Life Sci. 2006;78(18):2081–2087.
  • Anand P, Kunnumakkara AB, Newman RA, et al. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–818.
  • Leimgruber W, Batcho A, Schenker F. The structure of anthramycin. J Am Chem Soc. 1965;87(24):5793–5795.
  • Howard PW. Pyrrolobenzodiazepines as unsymmetrical dimeric pbd compounds for inclusion in targeted conjugates. WO2013041606. 2013.
  • Leblond B, Taverne T, Beausoleil E, et al. Substituted isoquinolines and their use as tubulin polymerization inhibitors. WO2011151423. 2011.
  • Djaballah H, Feldman T, Jiang X, et al. Allosteric reversible pan-caspase inhibitors. . WO2012134822. 2012.
  • Ekert P, Silke J, Vaux D. Caspase inhibitors. Cell Death Differ. 1999;6(11):1081–1086.
  • Callus B, Vaux D. Caspase inhibitors: viral, cellular and chemical. Cell Death Differ. 2007;14(1):73–78.
  • Keoni CL, Brown TL. Inhibition of apoptosis and efficacy of Pan caspase inhibitor, Q-VD-OPh, in models of human disease. J Cell Death. 2015;8:1.
  • Robertson GS, Crocker SJ, Nicholson DW, et al. Neuroprotection by the inhibition of apoptosis. Brain Pathol. 2000;10(2):283–292.
  • Rohn TT. The role of caspases in Alzheimer’s disease; potential novel therapeutic opportunities. Apoptosis. 2010;15(11):1403–1409.
  • Bandyopadhyay S. Compounds for photodynamic therapy. WO2012011875. 2012.
  • Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–387.
  • Vrouenraets MB, Visser G, Snow G, et al. Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer Res. 2002;23(1B):505–522.
  • Robertson C, Evans DH, Abrahamse H. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B. 2009;96(1):1–8.
  • Zhou HJ, Parlati F, Wustrow D. Methods and compositions for jamm protease inhibition. WO2013123071. 2013.
  • Turcu FER, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem. 2009;78:363–397.
  • Tan Y, Li S. Schiff-base conjugate of n, n-dibutyl-p-phenylenediamine with pyridoxal 5ʹ-phosphate for improved homocysteine assays using pyridoxal 5ʹ-phosphate-dependent enzymes. US20140193801. 2014.
  • Herrmann W, Pietrzik K, Fowler B, et al. Clinical use and rational management of homocysteine, folic acid, and B vitamins in cardiovascular and thrombotic diseases. Z Kardiol. 2004;93(6):439–453.
  • Fanapour PC, Yug B, Kochar MS. Hyperhomocysteinemia: an additional cardiovascular risk factor. WMJ. 1999;98(8):51–54.
  • Kunz K, Petitjean P, Lisri M, et al. Cardiovascular morbidity and endothelial dysfunction in chronic haemodialysis patients: is homocyst (e) ine the missing link? Nephrol Dial Transplant. 1999;14(8):1934–1942.
  • Maron BA, Loscalzo J. The treatment of hyperhomocysteinemia. Annu Rev Med. 2009;60:39–54.
  • Özkan Y, Yardim-Akaydin S, Firat H, et al. Usefulness of homocysteine as a cancer marker: total thiol compounds and folate levels in untreated lung cancer patients. Anticancer Res. 2007;27(2):1185–1189.
  • Domínguez RO, Marschoff ER, Guareschi EM, et al. Homocysteine, vitamin B 12 and folate in Alzheimer’s and vascular dementias: The paradoxical effect of the superimposed type II diabetes mellitus condition. Clin Chim Acta. 2005;359(1):163–170.
  • Pohanka M. Acetylcholinesterase inhibitors: a patent review (2008–present). Expert Opin Ther Pat. 2012;22(8):871–886.
  • Pohanka M. Alzheimer s disease and oxidative stress: a review. Curr Med Chem. 2014;21(3):356–364.
  • Anand P, Singh B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch Pharmacal Res. 2013;36(4):375–399.
  • Schwarz S, Csuk R, Rauter A. Microwave-assisted synthesis of novel purine nucleosides as selective cholinesterase inhibitors. Org Biomol Chem. 2014;12(15):2446–2456.
  • Gabellieri E, Guba W, Hilpert H, et al. 1,4-oxazepines as bace1 and/or bace2 inhibitors. US20120238548. 2012.
  • Vassar R. The β-secretase, BACE. J Mol Neurosci. 2001;17(2):157–170.
  • Banner D, Guba W, Hilpert H, et al. 2,5,6,7-tetrahydro-[1,4]oxazepin-3-ylamine or 2,3,6,7-tetrahydro-[1,4]oxazepin-5-ylamine compounds. WO 2011138293. 2011.
  • Andreini M, Banner D, Guba W, et al. 3-amino-5-phenyl-5,6-dihydro-2h-[1,4]oxazine derivatives. WO2011020806. 2011.
  • Al-Resayes SI, Warad I, Al-Nuri MA, et al. Heterocyclic schiff’s bases as novel and new antiglycation agents. US20140221429. 2014.
  • Ali MA, Ismail R, Pandian S, et al. Anti-mycobacterial agents. WO2012057599. 2012.
  • Owens JR, Salter WB, Simpson KM. Select schiff base compounds for chemical agent detoxification. US20150079304. 2015.
  • Barentsz J, Takahashi S, Oyen W, et al. Commonly used imaging techniques for diagnosis and staging. J Clin Oncol. 2006 Jul 10;24(20):3234–3244.
  • Yacoub JH, Verma S, Moulton JS, et al. Imaging-guided prostate biopsy: conventional and emerging techniques. Radiographics. 2012;32(3):819–837.
  • Koori H. Near infrared fluorescent imaging agent. US8765961. 2014.
  • Mowatt G, Brazzelli M, Gemmell H, et al. Systematic review of the prognostic effectiveness of SPECT myocardial perfusion scintigraphy in patients with suspected or known coronary artery disease and following myocardial infarction. Nucl Med Commun. 2005;26(3):217–229.
  • Piwnica-Worms D, Sharma V, Sivapackiam J. Pet/spect agents for applications in biomedical imaging. WO2012109611. 2012.
  • Narine A, Dickhaut J, Kaiser F, et al. Substituted mesoionic imine compounds for combating animal pests. WO2014033244. 2014.
  • Bandur NG, Deshmukh P, Dickhaut J, et al. Imine compounds. WO2012042006. 2012.
  • Anspaugh DD, Bandur NG, Braun FJ, et al. Imine substituted 2, 4 - diaryl - pyrroline derivatives as pesticides. WO 2012042007. (2012.
  • Körber K, Kaiser F, Pohlman M, et al. Imine compounds for combating invertebrate pests. WO2010072781. 2010.
  • Kosikowska P, Berlicki Ł. Urease inhibitors as potential drugs for gastric and urinary tract infections: a patent review. Expert Opin Ther Pat. 2011 Jul 1];21(6):945–957.
  • Choudhary MI, Khan A, Khan KM, et al. Schiff bases of thiazoles: a new class of ureases inhibitors. US20150368214. 2015.
  • Xing M. Schiff-based aldehydic hyaluronic acid-chitosan hydrogel compositions and uses thereof. WO 2014161085. 2014.
  • Al-Rubeaan KA. Wound dressing comprising of silver chitosan. WO2012143788. 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.