1,075
Views
37
CrossRef citations to date
0
Altmetric
Review

Caspase inhibitors: a review of recently patented compounds (2013-2015)

ORCID Icon, , , , , & ORCID Icon show all
Pages 47-59 | Received 16 Jun 2016, Accepted 06 Sep 2017, Published online: 18 Sep 2017

References

  • Fadeel B, Orrenius S. Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med. 2005;258: 479–517.
  • Pistritto G, Trisciuoglio D, Ceci C, et al. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY). 2016;8:603–619.
  • Kiraz Y, Adan A, Kartal Yandim M, et al. Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol. 2016;37(7):8471–8486.
  • Philchenkov AA. Caspases as regulators of apoptosis and other cell functions. Biochemistry (Mosc). 2003;68: 365–376.
  • Chowdhury I, Tharakan B, Bhat GK. Caspases - an update. Comp Biochem Physiol B Biochem Mol Biol. 2008;151: 10–27.
  • Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407:770–776.
  • Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science. 2004;305:626–629.
  • Zlender V. Apoptosis–programmed cell death. Arh Hig Rada Toksikol. 2003;54:267–274.
  • Budihardjo I, Oliver H, Lutter M, et al. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol. 1999;15:269–290.
  • Enari M, Sakahira H, Yokoyama H, et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 1998;391:43–50.
  • Walczak H, Krammer PH. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res. 2000;256: 58–66.
  • Darding M, Meier P. IAPs: guardians of RIPK1. Cell Death Differ. 2012;19:58–66.
  • Silke J, Meier P. Inhibitor of apoptosis (IAP) proteins-modulators of cell death and inflammation. Cold Spring Harb Perspect Biol. 2013;5(2):a008730.
  • Roy S, Nicholson DW. Cross-talk in cell death signaling. J Exp Med. 2000;192:F21–5.
  • Feoktistova M, Leverkus M. Programmed necrosis and necroptosis signalling. Febs J. 2015;282:19–31.
  • Murphy JM, Vince JE. Post-translational control of RIPK3 and MLKL mediated necroptotic cell death. F1000Res. 2015;4 ( F1000 Faculty Rev-1297) (doi: 10.12688/f1000research.7046.1).
  • de Almagro MC, Vucic D. Necroptosis: pathway diversity and characteristics. Semin Cell Dev Biol. 2015;39:56–62.
  • Thompson R, Shah RB, Liu PH, et al. An inhibitor of PIDDosome formation. Mol Cell. 2015;58:767–779.
  • Cho K, Cho MH, Seo JH, et al. Calpain-mediated cleavage of DARPP-32 in Alzheimer’s disease. Aging Cell. 2015;14:878–886.
  • Harwood SM, Yaqoob MM, Allen DA. Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis. Ann Clin Biochem. 2005;42:415–431.
  • McCollum AT, Nasr P, Estus S. Calpain activates caspase-3 during UV-induced neuronal death but only calpain is necessary for death. J Neurochem. 2002;82:1208–1220.
  • Broecker-Preuss M, Muller S, Britten M, et al. Sorafenib inhibits intracellular signaling pathways and induces cell cycle arrest and cell death in thyroid carcinoma cells irrespective of histological origin or BRAF mutational status. BMC Cancer. 2015;15:184.
  • Lee JH, Khor TO, Shu L, et al. Dietary phytochemicals and cancer prevention: nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol Ther. 2013;137:153–171.
  • Suboj P, Babykutty S, Srinivas P, et al. Aloe emodin induces G2/M cell cycle arrest and apoptosis via activation of caspase-6 in human colon cancer cells. Pharmacology. 2012;89:91–98.
  • Wen X, Lin ZQ, Liu B, et al. Caspase-mediated programmed cell death pathways as potential therapeutic targets in cancer. Cell Prolif. 2012;45:217–224.
  • Chauvier D, Ankri S, Charriaut-Marlangue C, et al. Broad-spectrum caspase inhibitors: from myth to reality? Cell Death Differ. 2007;14:387–391.
  • Ekert PG, Silke J, Vaux DL. Caspase inhibitors. Cell Death Differ. 1999;6: 1081–1086.
  • Fauvel H, Marchetti P, Chopin C, et al. Differential effects of caspase inhibitors on endotoxin-induced myocardial dysfunction and heart apoptosis. Am J Physiol Heart Circ Physiol. 2001;280:H1608–14,
  • van Noorden CJ. The history of Z-VAD-FMK, a tool for understanding the significance of caspase inhibition. Acta Histochem. 2001;103: 241–251.
  • Kim KW, Moretti L, Lu B. M867, a novel selective inhibitor of caspase-3 enhances cell death and extends tumor growth delay in irradiated lung cancer models. Plos One. 2008;3(5): e2275. *
  • Oberholzer C, Tschoeke SK, Moldawer LL, et al. Local thymic caspase-9 inhibition improves survival during polymicrobial sepsis in mice. J Mol Med (Berl). 2006;84:389–395.
  • Witek RP, Stone WC, Karaca FG, et al. Pan-caspase inhibitor VX-166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis. Hepatology. 2009;50:1421–1430.
  • Medina EA, Afsari RR, Ravid T, et al. Tumor necrosis factor-{alpha} decreases Akt protein levels in 3T3-L1 adipocytes via the caspase-dependent ubiquitination of Akt. Endocrinology. 2005;146:2726–2735.
  • Baskin-Bey ES, Washburn K, Feng S, et al. Clinical trial of the pan-caspase inhibitor, IDN-6556, in human liver preservation injury. Am J Transplant. 2007;7:218–225.
  • McCall MD, Maciver AM, Kin T, et al. Caspase inhibitor IDN6556 facilitates marginal mass islet engraftment in a porcine islet autotransplant model. Transplantation. 2012;94:30–35.
  • Pockros PJ, Schiff ER, Shiffman ML, et al. Oral IDN-6556, an antiapoptotic caspase inhibitor, may lower aminotransferase activity in patients with chronic hepatitis C. Hepatology. 2007;46:324–329.
  • Valentino KL, Gutierrez M, Sanchez R, et al. First clinical trial of a novel caspase inhibitor: anti-apoptotic caspase inhibitor, IDN-6556, improves liver enzymes. Int J Clin Pharmacol Ther. 2003;41:441–449.
  • Poordad FF. IDN-6556 Idun Pharmaceuticals Inc. Curr Opin Investig Drugs. 2004;5:1198–1204.
  • Cai SX, Guan L, Jia S, et al. Dipeptidyl aspartyl fluoromethylketones as potent caspase inhibitors: SAR of the N-protecting group. Bioorg Med Chem Lett. 2004;14:5295–5300.
  • Frydrych I, Mlejnek P, Dolezel P, et al. The broad-spectrum caspase inhibitor Boc-Asp-CMK induces cell death in human leukaemia cells. Toxicol In Vitro. 2008;22:1356–1360.
  • De Moissac D, Gurevich RM, Zheng H, et al. Caspase activation and mitochondrial cytochrome C release during hypoxia-mediated apoptosis of adult ventricular myocytes. J Mol Cell Cardiol. 2000;32:53–63.
  • Balsam LB, Kofidis T, Robbins RC. Caspase-3 inhibition preserves myocardial geometry and long-term function after infarction. J Surg Res. 2005;124:194–200.
  • Castro MM, Fuah J, Ali M, et al. Inhibitory effects of caspase inhibitors on the activity of matrix metalloproteinase-2. Biochem Pharmacol. 2013;86:469–475.
  • Chapman JG, Magee WP, Stukenbrok HA, et al. A novel nonpeptidic caspase-3/7 inhibitor, (S)-(+)-5-[1-(2-methoxymethylpyrrolidinyl)sulfonyl]isatin reduces myocardial ischemic injury. Eur J Pharmacol. 2002;456:59–68.
  • Han BS, Hong HS, Choi WS, et al. Caspase-dependent and -independent cell death pathways in primary cultures of mesencephalic dopaminergic neurons after neurotoxin treatment. J Neurosci. 2003;23:5069–5078.
  • Kuladip JBB, Pravat KP. Caspases: a potential therapeutic targets in the treatment of Alzheimer’s disease. Transl Med. 2013;S2: S2–006.
  • Rutherford NJ, Zhang YJ, Baker M, et al. Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet. 2008;4:e1000193.
  • Yang L, Sugama S, Mischak RP, et al. A novel systemically active caspase inhibitor attenuates the toxicities of MPTP, malonate, and 3NP in vivo. Neurobiol Dis. 2004;17:250–259.
  • Toulmond S, Tang K, Bureau Y, et al. Neuroprotective effects of M826, a reversible caspase-3 inhibitor, in the rat malonate model of Huntington’s disease. Br J Pharmacol. 2004;141:689–697.
  • Hui L, Frederick C, Ping S, et al. Caspase inhibitors reduce neuronal injury after focal but not global cerebral ischemia in rats. Stroke. 2000;31:176–182.
  • Braun JS, Prass K, Dirnagl U, et al. Protection from brain damage and bacterial infection in murine stroke by the novel caspase-inhibitor Q-VD-OPH. Exp Neurol. 2007;206:183–191.
  • Han W, Sun Y, Wang X, et al. Delayed, long-term administration of the caspase inhibitor Q-VD-OPh reduced brain injury induced by neonatal hypoxia-ischemia. Dev Neurosci. 2014;36:64–72.
  • Renolleau S, Fau S, Goyenvalle C, et al. Specific caspase inhibitor Q-VD-OPh prevents neonatal stroke in P7 rat: a role for gender. J Neurochem. 2007;100:1062–1071.
  • Akdemir O, Berksoy I, Karaoglan A, et al. Therapeutic efficacy of Ac-DMQD-CHO, a caspase 3 inhibitor, for rat spinal cord injury. J Clin Neurosci. 2008;15:672–678.
  • Colak A, Karaoglan A, Barut S, et al. Neuroprotection and functional recovery after application of the caspase-9 inhibitor z-LEHD-fmk in a rat model of traumatic spinal cord injury. J Neurosurg Spine. 2005;2:327–334.
  • Colak A, Antar V, Karaoglan A, et al. Q-VD-OPh, a pancaspase inhibitor, reduces trauma-induced apoptosis and improves the recovery of hind-limb function in rats after spinal cord injury. Neurocirugia (Astur). 2009;20:533–540, discussion 540
  • Favaloro B, Allocati N, Graziano V, et al. Role of apoptosis in disease. Aging (Albany NY). 2012;4:330–349.
  • Kudelova J, Fleischmannova J, Adamova E, et al. Pharmacological caspase inhibitors: research towards therapeutic perspectives. J Physiol Pharmacol. 2015;66:473–482.
  • Ratziu V, Sheikh MY, Sanyal AJ, et al. A phase 2, randomized, double-blind, placebo-controlled study of GS-9450 in subjects with nonalcoholic steatohepatitis. Hepatology. 2012;55:419–428.
  • Callus BA, Vaux DL. Caspase inhibitors: viral, cellular and chemical. Cell Death Differ. 2007;14: 73–78.
  • St-Louis MC, Massie B, Archambault D. The bovine viral diarrhea virus (BVDV) NS3 protein, when expressed alone in mammalian cells, induces apoptosis which correlates with caspase-8 and caspase-9 activation. Vet Res. 2005;36:213–227.
  • Brumatti G, Ma C, Lalaoui N, et al. The caspase-8 inhibitor emricasan combines with the SMAC mimetic birinapant to induce necroptosis and treat acute myeloid leukemia. Sci Transl Med. 2016;8:339ra69.
  • Limpachayaporn P, Schafers M, Haufe G. Isatin sulfonamides: potent caspases-3 and −7 inhibitors, and promising PET and SPECT radiotracers for apoptosis imaging. Future Med Chem. 2015;7(9):1173–1196.
  • Diomede L, Romeo M, Cagnotto A, et al. The new beta amyloid-derived peptide Abeta1-6A2V-TAT(D) prevents Abeta oligomer formation and protects transgenic C. Elegans Abeta Toxicity Neurobiol Dis. 2016;88:75–84.
  • Vandenabeele P, Vanden Berghe T, Festjens N. Caspase inhibitors promote alternative cell death pathways. Sci STKE. 2006;2006:pe44.
  • Caserta TM, Smith AN, Gultice AD, et al. Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties. Apoptosis. 2003;8:345–352.
  • Choi Y, Kim HS, Shin KY, et al. Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer’s disease models. Neuropsychopharmacology. 2007;32:2393–2404.
  • Barchet TM, Amiji MM. Challenges and opportunities in CNS delivery of therapeutics for neurodegenerative diseases. Expert Opin Drug Deliv. 2009;6:211–225.
  • Denora N, Trapani A, Laquintana V, et al. Recent advances in medicinal chemistry and pharmaceutical technology–strategies for drug delivery to the brain. Curr Top Med Chem. 2009;9:182–196.
  • Mignani S, El Kazzouli S, Bousmina M, et al. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. Adv Drug Deliv Rev. 2013;65:1316–1330.
  • Spuch C, Navarro C. Liposomes for targeted delivery of active agents against neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease). J Drug Deliv. 2011;2011:469679.
  • Hacker HG, Sisay MT, Gutschow M. Allosteric modulation of caspases. Pharmacol Ther. 2011;132:180–195.
  • Walters J, Schipper JL, Swartz P, et al. Allosteric modulation of caspase 3 through mutagenesis. Biosci Rep. 2012;32:401–411.
  • Ang MJ, Lau QY, Ng FM, et al. Peptidomimetic ethyl propenoate covalent inhibitors of the enterovirus 71 3C protease: a P2-P4 study. J Enzyme Inhib Med Chem. 2016;31:332–339.
  • Denes A, Lopez-Castejon G, Brough D. Caspase-1: is IL-1 just the tip of the ICEberg? Cell Death Dis. 2012;3:e338.
  • Qiao J, Wu J, Li Y, et al. Blockage of caspase-1 activation ameliorates bone marrow inflammation in mice after hematopoietic stem cell transplantation. Clin Immunol. 2016;162:84–90.
  • Rojas V, Camus-Guerra H, Guzman F, et al. Pro-inflammatory caspase-1 activation during the immune response in cells from rainbow trout Oncorhynchus mykiss (Walbaum 1792) challenged with pathogen-associated molecular patterns. J Fish Dis. 2015;38:993–1003.
  • Bonefeld CM, Geisler C Treatment of contact dermatitis PCT/DK2015/050068. 2015.
  • Bouchier-Hayes L, Green DR. Caspase-2: the orphan caspase. Cell Death Differ. 2012;19(1):51–57.
  • Fava LL, Bock FJ, Geley S, et al. Caspase-2 at a glance. J Cell Sci. 2012;125(Pt 24):5911–5915.
  • Hu HI, Chang HH, Sun DS. Differential regulation of caspase-2 in MPP(+)-induced apoptosis in primary cortical neurons. Exp Cell Res. 2015;332(1):60–66.
  • Troy CM, Rabacchi SA, Friedman WJ, et al. Caspase-2 mediates neuronal cell death induced by beta-amyloid. J Neurosci. 2000;20(4):1386–1392.
  • Peptide TC Inhibitors of Caspase 2 Activation. US20150148302 A1. 2015.
  • Engidawork E, Gulesserian T, Seidl R, et al. Expression of apoptosis related proteins in brains of patients with Alzheimer’s disease. Neurosci Lett. 2001;303:79–82.
  • Vigneswara V, Berry M, Logan A, et al. Pharmacological inhibition of caspase-2 protects axotomised retinal ganglion cells from apoptosis in adult rats. PLoS One. 2012;7:e53473.
  • Pozueta J, Lefort R, Ribe EM, et al. Caspase-2 is required for dendritic spine and behavioural alterations in J20 APP transgenic mice. Nat Commun. 2013;4:1939.
  • Di L. Strategic approaches to optimizing peptide ADME properties. Aaps J. 2015;17:134–143.
  • Gao S, Hu M. Bioavailability challenges associated with development of anti-cancer phenolics. Mini Rev Med Chem. 2010;10:550–567.
  • Zheng X, Wu C, Liu D, et al. Mechanism of C-terminal fragments of amyloid beta-protein as abeta inhibitors: do C-terminal interactions play a key role in their inhibitory activity?. J Phys Chem B. 2016; 120: 1615-23.
  • Offen D, Aharony I Peptides for the treatment of neurodegenerative diseases. EP2906583 A1. 2014.
  • Saudou F, Humbert S. The biology of huntingtin. Neuron. 2016;89:910–926.
  • Tallaksen-Greene SJ, Crouse AB, Hunter JM, et al. Neuronal intranuclear inclusions and neuropil aggregates in HdhCAG(150) knockin mice. Neuroscience. 2005;131:843–852.
  • Gafni J, Papanikolaou T, Degiacomo F, et al. Caspase-6 activity in a BACHD mouse modulates steady-state levels of mutant huntingtin protein but is not necessary for production of a 586 amino acid proteolytic fragment. J Neuroscience: Official Journal Soc Neurosci. 2012;32:7454–7465.
  • Graham RK, Deng Y, Carroll J, et al. Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo. J Neuroscience: Official Journal Soc Neurosci. 2010;30:15019–15029.
  • Wellington CL, Singaraja R, Ellerby L, et al. Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. J Biol Chem. 2000;275:19831–19838.
  • Halawani D, Tessier S, Anzellotti D, et al. Identification of Caspase-6-mediated processing of the valosin containing protein (p97) in Alzheimer’s disease: a novel link to dysfunction in ubiquitin proteasome system-mediated protein degradation. J Neuroscience: Official Journal Soc Neurosci. 2010;30:6132–6142.
  • Kaplan A, Stockwell BR. Therapeutic approaches to preventing cell death in Huntington disease. Prog Neurobiol. 2012;99:262–280.
  • LeBlanc AC. Caspase-6 as a novel early target in the treatment of Alzheimer’s disease. Eur J Neurosci. 2013;37:2005–2018.
  • Anagli J, Seyfried D Methods, systems, and compositions for calpain inhibition. US9074019 B2. 2015.
  • Nelson A Use of cyclodextrins for the treatment of cerebral ischaemia and central nervous system injury WO2000004888A2. 2000.
  • Ellerby LM, Ellman JA, Leyva MJ Caspase inhibitors and uses thereof. US20140011847 A1. 2014.
  • Goffredo D, Rigamonti D, Zuccato C, et al. Prevention of cytosolic IAPs degradation: a potential pharmacological target in Huntington’s disease. Pharmacological Res. 2005;52:140–150.
  • Xu F, Sun C, Wang J Uses of 2-[(4-formyl-pyrazol-5-yl)-thio]acetic acid derivatives in preparation of Caspase-3 inhibitors. CN104138372 A. 2013.
  • Galvan V, Chen S, Lu D, et al. Caspase cleavage of members of the amyloid precursor family of proteins. J Neurochem. 2002;82:283–294.
  • Fan W, Qiao ZB, Zhu XM, et al. Application of caspase-3 inhibitor to prepare for promoting nerve regeneration after cerebral stroke. CN201310371351. 2013.
  • Fan W, Dai Y, Xu H, et al. Caspase-3 modulates regenerative response after stroke. Stem Cells. 2014;32:473–486.
  • Rosell A, Cuadrado E, Alvarez-Sabin J, et al. Caspase-3 is related to infarct growth after human ischemic stroke. Neurosci Lett. 2008;430:1–6.
  • Sun Y, Xu Y, Geng L. Caspase-3 inhibitor prevents the apoptosis of brain tissue in rats with acute cerebral infarction. Exp Ther Med. 2015;10:133–138.
  • Watanabe C, Shu GL, Zheng TS, et al. Caspase 6 regulates B cell activation and differentiation into plasma cells. J Immunol. 1950;2008(181):6810–6819.
  • Estaquier J Caspase-6 inhibitors for treating t cell activation and/or proliferation disorders. WO2014060392 A1. 2014.
  • Gregoli PA, Bondurant MC. Function of caspases in regulating apoptosis caused by erythropoietin deprivation in erythroid progenitors. J Cell Physiol. 1999;178:133–143.
  • Brown TL. Q-VD-OPh, ne`xt generation caspase inhibitor. Adv Exp Med Biol. 2004;559:293–300.
  • Ahlfors J, Mekouar K Selective caspase inhibitors and uses thereof. US9045524 B2. 2015.
  • Shabanzadeh AP, D’Onofrio PM, Monnier PP, et al. Targeting caspase-6 and caspase-8 to promote neuronal survival following ischemic stroke. Cell Death Dis. 2015;6:e1967.
  • Tang J, An XL, Song HG, et al. [The changes of histology and biochemical parameters in retina of the patient with diabetic retinopathy]. Zhonghua Yan Ke Za Zhi. 2004;40:689–691.
  • Prescimone T, D’Amico A, Caselli C, et al. Caspase-1 transcripts in failing human heart after mechanical unloading. Cardiovasc Pathol. 2015;24:11–18.
  • Ilzecka J. Serum caspase-9 levels are increased in patients with amyotrophic lateral sclerosis. Neurol Sci. 2012;33:825–829.
  • King AJ, Arnone MR, Bleam MR, et al. Dabrafenib; preclinical characterization, increased efficacy when combined with trametinib, while BRAF/MEK tool combination reduced skin lesions. PLoS One. 2013;8:e67583.
  • Greger JG, Eastman SD, Zhang V, et al. Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations. Mol Cancer Ther. 2012;11:909–920
  • Miao ZH, Li JX, Feng JM Application of dabrafenib for programmed necrosis inhibition and liver protection. CN103520162 B. 2013.
  • Falchook GS, Long GV, Kurzrock R, et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet. 2012;379:1893–1901.
  • Hong DS, Vence L, Falchook G, et al. BRAF(V600) inhibitor GSK2118436 targeted inhibition of mutant BRAF in cancer patients does not impair overall immune competency. Clin Cancer Res. 2012;18:2326–2335.
  • Long GV, Stroyakovskiy D, Gogas H, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet. 2015;386:444–451.
  • Zack DJ, Welsbie DS, Yang Z Compounds and methods of use thereof for treating neurodegenerative disorders. WO2013177367 A2. 2013.
  • Tomita H, Nakazawa T, Sugano E, et al. Nipradilol inhibits apoptosis by preventing the activation of caspase-3 via S-nitrosylation and the cGMP-dependent pathway. Eur J Pharmacol. 2002;452:263–268.
  • Chi W, Li F, Chen H, et al. Caspase-8 promotes NLRP1/NLRP3 inflammasome activation and IL-1beta production in acute glaucoma. Proc Natl Acad Sci U S A. 2014;111:11181–11186.
  • Bannen L c-Met modulators and methods of use US20070054928 A1. 2007.
  • Xiang Q, Zhen Z, Deng DY, et al. Tivantinib induces G2/M arrest and apoptosis by disrupting tubulin polymerization in hepatocellular carcinoma. J Exp Clin Cancer Res. 2015;34:118.
  • Katayama R, Kobayashi Y, Friboulet L, et al. Cabozantinib overcomes crizotinib resistance in ROS1 fusion-positive cancer. Clin Cancer Res. 2015;21:166–174.
  • Katayama R, Sakashita T, Yanagitani N, et al. P-glycoprotein mediates ceritinib resistance in anaplastic lymphoma kinase-rearranged non-small cell lung cancer. EBioMedicine. 2016;3:54–66.
  • Janne PA, Meyerson M. ROS1 rearrangements in lung cancer: a new genomic subset of lung adenocarcinoma. J Clin Oncol. 2012;30:878–879.
  • Bergethon K, Shaw AT, Ou SH, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 2012;30:863–870.
  • Zillhardt M, Park SM, Romero IL, et al. Foretinib (GSK1363089), an orally available multikinase inhibitor of c-Met and VEGFR-2, blocks proliferation, induces anoikis, and impairs ovarian cancer metastasis. Clin Cancer Res. 2011;17:4042–4051.
  • Shah MA, Wainberg ZA, Catenacci DV, et al. Phase II study evaluating 2 dosing schedules of oral foretinib (GSK1363089), cMET/VEGFR2 inhibitor, in patients with metastatic gastric cancer. Plos One. 2013;8:e54014.
  • Qian F, Engst S, Yamaguchi K, et al. Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases. Cancer Res. 2009;69:8009–8016.
  • Cheng JW, Cheng SW, Wei R, et al. Anti-vascular endothelial growth factor for control of wound healing in glaucoma surgery. Cochrane Database Syst Rev. 2016;15(1):Cd009782.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.