191
Views
16
CrossRef citations to date
0
Altmetric
Review

Biological evaluation of benzosuberones

, &
Pages 5-29 | Received 18 Jun 2017, Accepted 02 Oct 2017, Published online: 24 Oct 2017

References

  • Chaudhary A, Das P, Mishra A, et al. Naturally occurring himachalenes to benzocycloheptene amino vinyl bromide derivatives: as antidepressant molecules. Mol Divers. 2012;16:357–366.
  • Farghaly TA, Gomha SM, Dawood KM, et al. Synthetic routes to benzosuberone-based fused and spiro-heterocyclic ring systems. RSC Adv. 2016;6:17955–17979.
  • Crielaard BJ, van der Wal S, Lammers T, et al. A polymeric colchicinoid prodrug with reduced toxicity and improved efficacy for vascular disruption in cancer therapy. Int J Nanomed. 2011;6:2697–2703.
  • Chungwong S, Sasso S, Jones H, et al. Stereochemical considerations and the antiinflammatory activity of 6-amino-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ols and related derivatives. J Med Chem. 1984;27:20–27.
  • Terkeltaub RA. Colchicine update: 2008. Semin Arthritis Rheum. 2009;38(6):411–419.
  • Niel E, Scherrmann JM. Colchicine today. Joint Bone Spine. 2006;73(6):672–678.
  • Kanthou C, Tozer GM. Tumour targeting by microtubule-depolymerizing vascular disrupting agents. Expert Opin Ther Targets. 2007;11(11):1443–1457.
  • Chaplin DJ, Hills SA. The development of combretastatin A4 phosphate as a vascular targeting agent. Int Radiat Oncol Biol Phys. 2002;54:1491–1496.
  • Yang CS, Lambert JD, Ju J, et al. Tea and cancer prevention: molecular mechanisms and human relevance. Toxicol Appl Pharmacol. 2007;224:265–273.
  • Pan E, Harinantenaina L, Brodie PJ, et al. Four diphenylpropanes and a cycloheptadibenzofuran from Bussea sakalava from the Madagascar dry forest. J Nat Prod. 2010;73:1792–1795.
  • Gonzalez AG, Andres LS, Luis JG, et al. Diterpenes from Salvia mellifera. Phytochemistry. 1991;130:4067–4070.
  • Yutaka A, Yoshinao T, Haruhiko F, et al. Semisynthesis of isetexane diterpenoid analogues and their cytotoxic activity. Chem Pharm Bull. 2006;54:1602–1604.
  • Endo Y, Ohta Y, Nozoe S. Favelines, novel tricyclic benzocycloheptenes with cytotoxic activities from Brazilian plant, Doscolus phyllacanthus. Tetrahedron Lett. 1991;32:3083–3086.
  • Koenig JE, Senge T, Allhoff EP, et al. Analysis of the inflammatory network in benign prostate hyperplasia and prostate cancer. Prostate. 2004;58:121.
  • Boyland E, Boyland ME. Studies in tissue metabolism; IX, action of colchicine and B. typhosus extract. Biochem J. 1937;31:454–460.
  • Falasca GF. Metabolic diseases: gout. Clinic Dermatol. 2006;24:498–508.
  • Lippert JW. Vascular disrupting agents. Biorg Med Chem. 2007;15:605–615.
  • Goto H, Yano S, Zhang H, et al. Activity of a new vascular targeting agent, ZD6126, in pulmonary metastases by human lung adenocarcinoma in nude mice. Cancer Res. 2002;62(13):3711–3715.
  • Blakey DC, Ashton SE, Westwood FR, et al. ZD6126: a novel small molecule vascular targeting agent. J Int J Radiat Oncol Biol Phys. 2002;54:1497–1502.
  • Adams RP. Cedar Wood oil–analysis and properties. In: Linskens HF, Jackson JF, editors. Modern methods of plant analysis, new series, Vol. 12, essential oils and waxes. Vol. 12. New York (NY): Springer-Verlag; 1991. p. 159–173.
  • Tambar UK, Ebner DC, Stoltz BM. A convergent and enantioselective synthesis of (+)-amurensinine via selective C-H and C-C bond insertion reactions. J Am Chem Soc. 2006;128:11752–11753.
  • Hanessian S, Parthasarathy S, Mauduit M. The power of visual imagery in drug design. Isopavines as a new class of morphinomimetics and their human opioid receptor binding activity. J Med Chem. 2003;46:34–48.
  • Hoffsomer RD, Taub D, Wendler NL. The homoallylic rearrangement in the synthesis of amitriptyline and related systems. J Org Chem. 1962;27:4134–4137.
  • Schindler W, Häfliger F. Åber derivate des iminodibenzyls. Helv Chim Acta. 1954;59:472–483.
  • Hoffmeister VF, Wutke W, Kroneberg G. Zur pharmakologie des thymolepticum noxiptilin. Arzneimittel Forsch. 1969;19:846–878.
  • Middleton E Jr, Kandaswami C, Theoharides TC. The effect of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev. 2000;52:673–751.
  • Nakamura Y, Watanabe S, Miyake N, et al. Dihydrochalcones: evaluation as novel radical scavenging antioxidants. J Agric Food Chem. 2003;51:3309–3312.
  • Dimmock JR, Elias DW, Beazely MA, et al. Bioactivities of chalcones. Curr Med Chem. 1999;6:1125–1149.
  • Go ML, Wu X, Liu XL. Chalcones: an update on cytotoxic and chemopreventive properties. Curr Med Chem. 2005;12:483–499.
  • Koeberle SC, Romir J, Fischer S, et al. Skepinone-L is a selective p38 mitogen-activated protein kinase inhibitor. Nat Chem Biol. 2012;8:141−143.
  • Rudalska Y, Dauch D, Longerich T, et al. In vivo RNAi screening identifies a mechanism of sorafenib resistance in liver cancer. Nat Med. 2014;20:1138–1146.
  • Fischer S, Wentsch HK, Mayer-Wrangowski SC, et al. Dibenzosuberones as p38 mitogen-activated protein kinase inhibitors with low ATP competitiveness and outstanding whole blood activity. J Med Chem. 2013;56:241–253.
  • Baur B, Storch K, Martz KE, et al. Metabolically stable dibenzo[b, e]oxepin-11(6H)-ones as highly selective p38 MAP kinase inhibitors: optimizing anti-cytokine activity in human whole blood. J Med Chem. 2013;56:8561−8578.
  • Sajja Y, Vulupala HR, Bantu R, et al. Three-component, one-pot synthesis of benzo[6,7]cyclohepta[1,2-b]pyridine derivatives under catalyst free conditions and evaluation of their anti-inflammatory activity. Bioorg Med Chem Lett. 2016;26:858–863.
  • Barker MD, Demaine DA, House D, et al. Preparation of heterocycle-substituted N-benzoxazinylpropanamides as glucocorticoid receptor binders and agonists for the treatment of inflammatory, allergic and skin diseases. PCT Int. Appl. WO 2004071389 A2 20040826. 2004.
  • Wakefield BD, Altenbach RJ, Black LA, et al. Preparation and use of macrocyclic benzo-fused pyrimidine compounds for treatment and prevention of diseases related to histamine H4 receptor. U.S. Pat. Appl. Publ. US 20100016344 A1 20100121. 2010.
  • Che Q, Vo NH, Chen S, et al. Preparation of substituted benzocycloheptathiazole derivatives and analogs for use as immunosuppressive agents. PCT Int. Appl. WO 2009089305 A1 20090716. 2009.
  • Nagarapu L, Rao NV. Synthesis of phenylimidazo thiazolo benzocycloheptene derivatives as potential antiinflammatory agent-IV. Heterocycl Commun. 2001;7:535–540.
  • Firooznia F, Gillespie P, Lin T–A, et al. Preparation of benzocycloheptene acetic acids as CRTH2 antagonists. U.S. Pat. Appl. Publ. US 20120309796 A1 20121206. 2012.
  • Cowart MD, Altenbach RJ, Liu H, et al. Rotationally constrained 2,4-diamino-5,6-disubstituted pyrimidines: a new class of histamine H4 receptor antagonists with improved drug likeness and in vivo efficacy in pain and inflammation models. J Med Chem. 2008;51:6547–6557.
  • Hancock AA, Altenbach RJ, Liu H, et al. Macrocyclic benzo-fused pyrimidine derivatives and their preparation and use in the treatment of diseases. PCT Int. Appl. WO 2008060767 A2 20080522. 2008.
  • Lynch KR, MacDonald TL, Preparation of benzocycloheptylalkylhydroxyamines having sphingosine-1-phosphate (S1P) receptor activity. PCT Int. Appl. WO 2008064337 A2 20080529. 2008.
  • Martz KE, Dorn A, Baur B, et al. Targeting the hinge glycine flip and the activation loop: novel approach to potent p38 α inhibitors. J Med Chem. 2012;55:7862−7874.
  • Yadagiri B, Gurrala S, Bantu R, et al. Synthesis and evaluation of benzosuberone embedded with 1,3,4-oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole moieties as new potential anti-proliferative agents. Bioorg Med Chem Lett. 2015;25:2220–2224.
  • Silva SBL, Torre AD, de Carvalho JE, et al. Seven-membered rings through metal-free rearrangement mediated by hypervalent iodine. Molecules. 2015;20:1475–1494.
  • Yadagiri B, Holagunda UD, Bantu R, et al. Rational design, synthesis and anti-proliferative evaluation of novel benzosuberone tethered with hydrazide–hydrazones. Bioorg Med Chem Lett. 2014;24:5041–5044.
  • Nagarapu L, Yadagiri B, Bantu R, et al. Studies on the synthetic and structural aspects of benzosuberones bearing 2,4-thiazolidenone moiety as potential anti-cancer agents. Eur J Med Chem. 2014;71:91–97.
  • Sowmya V, Lavanya J, Yasodakrishna S, et al. A novel piperazine linked β-amino alcohols bearing a benzosuberone scaffolds as anti-proliferative agents. Bioorg Med Chem Lett. 2017;27:792–796.
  • Dimmock JR, Kandepu NM, Nazarali AJ, et al. Conformational and quantitative structure-activity relationship study of cytotoxic 2-arylidene-benzocycloalkanones. J Med Chem. 1999;42:1358–1366.
  • Monostory K, Tamási V, Vereczkey L, et al. A study on CYP1A inhibitory action of E-2-(4’-methoxybenzylidene)-1-benzosuberone and some related chalcones and cyclic chalcone analogues. Toxicology. 2003;184:203–210.
  • Rozmer Z, Berki T, Maa`Sz G, et al. Different effects of two cyclic chalcone analogues on redox status of Jurkat T cells. Toxicology in Vitro. 2014;28:1359–1365.
  • Pilatova M, Varinska L, Perjesi P, et al. In vitro antiproliferative and antiangiogenic effects of synthetic chalcone analogues. Toxicology in Vitro. 2010;24:1347–1355.
  • Tanpure RP, George CS, Strecker TE, et al. Synthesis of structurally diverse benzosuberene analogues and their biological evaluation as anti-cancer agents. Bioorg Med Chem. 2013;21:8019–8032.
  • Pinney KG, Sriram M, George C, et al. Efficient method for preparing functionalized benzosuberenes useful as cytotoxic agents. PCT Int. Appl. WO 2012068284 A2 20120524. 2012.
  • Sriram M, Hall JJ, Grohmann NC, et al. Design, synthesis and biological evaluation of dihydronaphthalene and benzosuberene analogs of the combretastatins as inhibitors of tubulin polymerization in cancer chemotherapy. Bioorg Med Chem. 2008;16:8161–8171.
  • Devkota L, Lin C-M, Strecker TE, et al. Design, synthesis, and biological evaluation of water-soluble amino acid prodrug conjugates derived from combretastatin, dihydronaphthalene, and benzosuberene-based parent vascular disrupting agents. Bioorg Med Chem. 2016;24(5):938–956.
  • Herdman CA, Devkota L, Lin C-M, et al. Structural interrogation of benzosuberene-based inhibitors of tubulin polymerization. Bioorg Med Chem. 2015;23(24):7497–7520.
  • Chen Z, Maderna A, Sukuru SCK, et al. New cytotoxic benzosuberene analogs. Synthesis, molecular modeling and biological evaluation. Bioorg Med Chem Lett. 2013;23:6688–6694.
  • Tanpure RP, George CS, Sriram M, et al. An amino-benzosuberene analogue that inhibits tubulin assembly and demonstrates remarkable cytotoxicity. Med Chem Commun. 2012;3:720–724.
  • Atigadda VR, Xia G, Deshpande A, et al. Conformationally defined rexinoids and their efficacy in the prevention of mammary cancers. J Med Chem. 2015;58:7763−7774.
  • Grubbs CJ, Lubet RA, Atigadda VR, et al. Efficacy of new retinoids in the prevention of mammary cancers and correlations with short-term biomarkers. Carcinogenesis. 2006;27:1232–1239.
  • Gad WA, Nassar DO. The utility of 8-fluoro-1-benzosuberone in the synthesis of new azole, pyran and pyrimidine derivatives as cytotoxic and anti-tumor agents. Org Chem Indian J. 2014;10:398–405.
  • Schmitt C, Voegelin M, Marin A, et al. Selective aminopeptidase-N (CD13) inhibitors with relevance to cancer chemotherapy. Bioorg Med Chem. 2013;21:2135–2144.
  • Hay MP, Blaser A, Denny WA, et al. Tricyclic 1,2,4-triazine oxides as hypoxia-selective drugs and radio sensitizers and their preparation and use for the treatment of cancer. N.Z. NZ 575643 A 20100730. 2010.
  • Hay MP, Blaser A, Denny WA, et al. Preparation of tricyclic 1,2,4-triazine oxides as cancer treatments. PCT Int. Appl. WO 2006104406 A1 20061005; 2006.
  • Hitoshi Y, Holland S, Payan DG. Axl inhibitors for use in combination therapy for preventing, treating or managing metastatic cancer. PCT Int. Appl. WO 2010083465 A1 20100722. 2010.
  • Murineddu G, Cignarella G, Chelucci G, et al. Synthesis and cytotoxic activities of pyrrole[2,3-d]pyridazin-4-one derivatives. Chem Pharm Bull. 2002;50:754–759.
  • Amr A-GE, Mohamed AM, Mohamed SF, et al. Anticancer activities of some newly synthesized pyridine, pyrane, and pyrimidine derivatives. Bioorg Med Chem. 2006;14:5481–5488.
  • Amano Y, Noguchi M, Shudo K Preparation of tricyclic amide compounds having retinoid activity. PCT Int. Appl. WO 2009022721 A1 20090219. 2009.
  • Yadagiri B, Holagunda UD, Bantu R, et al. Synthesis of novel building blocks of benzosuberone bearing coumarin moieties and their evaluation as potential anticancer agents. Eur J Med Chem. 2014;79:260–265.
  • Bhat S, Shim JS, Liu JO. Tricyclic thiazoles are a new class of angiogenesis inhibitors. Bioorg Med Chem Lett. 2013;23:2733–2737.
  • Hammam AEG, Abdel-Hafez NA, Midura WH, et al. Chemistry of seven-membered heterocycles. VI. Synthesis of novel bicyclic heterocyclic compounds as potential anticancer and anti-HIV agents. Zeitschrift Naturforsch B. 2000;55:417–424.
  • Wang Y, Di H, Chen F, et al. Discovery of benzocycloalkane derivatives efficiently blocking bacterial virulence for the treatment of methicillin-resistant S. aureus (MRSA) infections by targeting diapophytoene desaturase (CrtN) other sources. J Med Chem. 2016;59:4831–4848.
  • Abd El-Salam OI, Alsayed AS, Ali KA, et al. Synthesis and antimicrobial evaluation of a new series of heterocyclic systems bearing a benzosuberone scaffold. Molecules. 2015;20:20434–20447.
  • Chupak LS, Kaneko T, Josyula VPVN, et al. Preparation of tricyclyl-substituted oxazolidinones and related compounds as antibacterial agents. PCT Int. Appl. WO 2004069832 A2 20040819. 2004.
  • Chupak LS, Kaneko T, Josyula VPVN, et al. Preparation of N-substituted bicyclic oxazolidinones as antibacterial agents. PCT Int. Appl. WO 2004069244 A1 20040819. 2004.
  • Rao JV, Reddy VK, Bhavani R, et al. Novel benzosuberone derivatives: synthesis, characterization and antibacterial activity. Orient J Chem. 2015;31:2253–2258.
  • Farghaly TA, Abbas EMH. Hydrazonoyl halides as precursors for synthesis of novel bioactive thiazole and formazan derivatives. J Chem Res. 2012;36:660–664.
  • Farghaly TA, Abdalla MM. Synthesis, tautomerism, and antimicrobial, anti-HCV, anti-SSPE, antioxidant, and antitumor activities of arylazobenzosuberones. Bioorg Med Chem. 2009;17:8012–8019.
  • Sajja Y, Vanguru S, Jilla L, et al. A convenient synthesis and screening of benzosuberone bearing 1,2,3-triazoles against Mycobacterium tuberculosis. Bioorg Med Chem Lett. 2016;26:4292–4295.
  • Teitelbaum AM, Meissner A, Harding RA, et al. Synthesis, pH-dependent, and plasma stability of meropenem prodrugs for potential use against drug-resistant tuberculosis. Bioorg Med Chem. 2013;21:5605–5617.
  • Robl JA, Chen B-C, Sun C-Q Preparation of fused pyridine derivatives as HMG-CoA reductase inhibitors. U.S. Pat. Appl. Publ. US 20020061901 A1 20020523. 2002.
  • Robl JA, Chen B-C, Sun C-Q Preparation of fused pyridine derivatives as HMG-CoA reductase inhibitors. PCT Int. Appl. WO 2001096311 A2 20011220. 2001.
  • Farghaly TA, Gomha SM, Abbas EMH, et al. Hydrazonoyl halides as precursors for new fused heterocycles of 5α-reductase inhibitors. Arch Pharm Chem Life Sci. 2012;345:117–122.
  • Albrecht S, Al-Lakkis-Wehbe M, Orsini A, et al. Amino-benzosuberone: a novel warhead for selective inhibition of human aminopeptidase-N/CD13. Bioorg Med Chem. 2011;19:1434–1449.
  • Maiereanu C, Schmitt C, Schifano-Faux N, et al. A novel amino-benzosuberone derivative is a picomolar inhibitor of mammalian aminopeptidase N/CD13. Bioorg Med Chem. 2011;19:5716–5733.
  • Tarnus-Rondeau C, Defoin A, Albrecht S, et al. Dérivés d’aminobenzocycloheptènes, leurs procédés de préparation et leur utilization en thérapeutique. French Patent: FR2908131, W2008059141. 2008.
  • Albrecht S, Salomon E, Defoin A, et al. Rapid and efficient synthesis of a novel series of substituted aminobenzosuberone derivatives as potent, selective, non-peptidic neutral aminopeptidase inhibitors. Bioorg Med Chem. 2012;20:4942–4953.
  • Peters J, Weber S, Kritter S, et al. Aminomethylpyridines as DPP-IV inhibitors. Bioorg Med Chem Lett. 2004;14:3579–3580.
  • Vaskova J, Reisch R, Vasko L, et al. Effect of selected dimethylaminochalcones on some mitochondrial activities. In Vitro Cell Dev Biol-Animal. 2013;49(5):354–359.
  • Han Q, Pabba PK, Barbosa J, et al. 4H-Thieno[3,2-c]chromene based inhibitors of Notum Pectinacetylesterase. Bioorg Med Chem Lett. 2016;26:1184–1187.
  • Contreras J-M, Parrot I, Sippl W, et al. Design, synthesis, and structure-activity relationships of a series of 3-[2-(1-Benzylpiperidin-4-yl)ethylamino]pyridazine derivatives as acetylcholinesterase inhibitors. J Med Chem. 2001;44:2707–2718.
  • McKenna MT, Proctor GR, Young LC, et al. Novel tacrine analogs for potential use against Alzheimer’s disease: potent and selective acetylcholinesterase inhibitors and 5-HT uptake inhibitors. J Med Chem. 1997;40:3516–3523.
  • Thompson LA, Shi J, Wu Y-J, et al. Tricyclic compounds as inhibitors for the production of beta-amyloid and their preparation. U.S. Pat. Appl. Publ. US 20130131051 A1 20130523. 2013.
  • Stoit AR, Lange JHM, Hartog AP, et al. Design, synthesis and biological activity of rigid cannabinoid CB1 receptor antagonists. Chem Pharm Bull. 2002;50:1109–1113.
  • Murineddu G, Ruiu S, Loriga G, et al. Tricyclic pyrazoles. 3. synthesis, biological evaluation, and molecular modeling of analogues of the cannabinoid antagonist 8-Chloro-1-(2’,4’-dichlorophenyl)-N-piperidin-1-yl-1,4,5,6-tetrahydrobenzo[6,7] cyclohepta [1,2-c]pyrazole-3-carboxamide. J Med Chem. 2005;48:7351–7362.
  • Russell MGN, Baker JR, Billington DC, et al. Benz[f]isoquinoline analogues as high-affinity σ ligands. J Med Chem. 1992;35:2025–2033.
  • Hinze C, Frank R, Jostock R, et al. Preparation of benzo-condensed cycloheptanones, homopiperidinones, thiepinones, and oxepinones as vanilloid VR1, cannabinoid CB1, and cannabinoid CB2 receptor modulators. PCT Int. Appl. WO 2006122776 A1 20061123. 2006.
  • Lazzari P, Distinto R, Manca I,G, et al. A critical review of both the synthesis approach and the receptor profile of the 8-chloro-1-(2’,4’-dichlorophenyl)-N-piperidin-1-yl-1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole-3-carboxamide and analogue derivatives. Eur J Med Chem. 2016;121:194–208.
  • Zhang Y, Burgess JP, Brackeen M, et al. Conformationally constrained analogues of N-(piperidinyl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716): design, synthesis, computational analysis, and biological evaluations. J Med Chem. 2008;51:3526–3539.
  • Meye FJ, Trezza V, Vanderschuren LJMJ, et al. Neutral antagonism at the cannabinoid 1 receptor: a safer treatment for obesity. Mol Psychiatry. 2013;18:1294–1301.
  • Singh R, Heckrodt TJ, Holland S Preparation of polycyclic heteroaryl substituted triazoles useful as Axl receptor kinase inhibitors, PCT Int. Appl. WO 2010005876 A2 20100114. 2010.
  • Goff D, Zhang J, Singh R, et al. Preparation of polycyclic aryl and heteroaryl substituted triazoles as Axl receptor tyrosine kinase inhibitors, PCT Int. Appl. WO 2009054864 A1 20090430. 2009.
  • Goff D, Zhang J, Singh R, et al. Bicyclic aryl and bicyclic heteroaryl substituted triazoles useful as Axl inhibitors. PCT Int. Appl. WO 2008083353 A1 20080710. 2008.
  • Goff D, Zhang J, Singh R, et al. Polycyclic heteroaryl substituted triazoles useful as Axl inhibitors and their preparation, PCT Int. Appl. WO 2008083367 A2 20080710. 2008.
  • Mccormick KD, Dong L, Boyce CW, et al. Biaryl spiroaminooxazoline analogs as α2C adrenergic receptor modulators and their preparation and use in the treatment of diseases, PCT Int. Appl. WO 2010042473 A1 20100415. 2010.
  • Taniguchi K, Sakurai M, Fujii N, et al. Preparation of propanolamine tetrahydro-5H-benzocycloheptene derivatives as β3 adrenergic receptor agonists. PCT Int. Appl. WO 9951564, A1, 1999-JP1500 (Chem Abstr 131:286274). 1999.
  • Schmidlin T, Rueeger H, Gerspacher M Preparation of condensed thiazolamines as neuropeptide Y5 antagonists. PCT Int. Appl. WO 2001064675 A1 20010907. 2001.
  • Rueeger H, Gerspacher M, Buehlmayer P, et al. Discovery and SAR of potent, orally available and brain-penetrable 5,6-dihydro-4H-3-thia-1-aza-benzo[e]azulen- and 4,5-dihydro-6-oxa-3-thia-1-aza-benzo[e]azulen derivatives as neuropeptide Y Y5 receptor antagonists. Bioorg Med Chem Lett. 2004;14:2451–2457.
  • Marzabadi MR, Wong WC, Noble SA, et al. Preparation of selective NPY (Y5) antagonists and pharmaceutical compositions thereof for treating an abnormality modulated by human Y5 receptor activity. PCT Int. Appl. WO 2001002379 A1 20010111. 2001.
  • Giardina GAM, Sarau HM, Farina C, et al. Discovery of a novel class of selective non-peptide antagonists for the human neurokinin-3 receptor. 1. Identification of the 4-quinolinecarboxamide framework. J Med Chem. 1997;40:1794–1807.
  • Schoentjes B, Poncelet AP, Doyon JGP-O, et al. Benzocycloheptane and benzoxepine derivatives as GHS1A-r receptor agonists, their preparation, pharmaceutical compositions, and use in therapy. PCT Int. Appl. WO 2009133052 A1 20091105. 2009.
  • Hajela K, Jha AK, Singh MM, et al. Preparation of novel N-substituted dihydrobenzothiepino-, dihydrobenzoxepino- and tetrahydrobenzocyclo-heptaindoles as selective estrogen receptor modulators. Indian Pat. Appl. IN 2005DE00703 A 20090619. 2009.
  • Hajela K, Jha AK, Singh MM, et al. Preparation of dihydrobenzothiepinoindoles, dihydrobenzo-xepinoindoles and tetrahydrobenzocycloheptaindoles as estrogen receptor modulators. PCT Int. Appl. WO 2005094833 A1 20051013. 2005.
  • LaFrate AL, Gunther JR, Carlson KE, et al. Synthesis and biological evaluation of guanylhydrazone coactivator binding inhibitors for the estrogen receptor. Bioorg Med Chem. 2008;16:10075–10084.
  • Siddiqui MA, Chaoyang MD, Umar F, et al. Preparation of spiro-condensed 1,3,4-thiadiazole derivatives for inhibiting KSP kinesin activity. PCT Int. Appl. WO 2009052288 A1 20090423. 2009.
  • Cai J, Firooznia F, Guertin KR, et al. Substituted 2-(acylamino)thiazoles as adenosine A2B receptor antagonists, their preparation, pharmaceutical compositions, and use in therapy. PCT Int. Appl. WO 2006013054 A1 20060209. 2006.
  • Göblyös A, Santiago SN, Pietra D, et al. Synthesis and biological evaluation of 2-aminothiazoles and their amide derivatives on human adenosine receptors. Lack of effect of 2-aminothiazoles as allosteric enhancers. Bioorg Med Chem. 2005;13:2079–2087.
  • Chordia MD, Murphree LJ, Macdonald TL, et al. 2-aminothiazoles: a new class of agonist allosteric enhancers of A1 adenosine receptors. Bioorg Med Chem Lett. 2002;12:1563–1566.
  • Lütnant I, Schepmann D, Wünsch B. Benzimidazolone bioisosteres of potent GluN2B selective NMDA receptor antagonists. Eur J Med Chem. 2016;116:136–146.
  • Zhang X, Li X, Allan GF, et al. Discovery of indole-containing tetracycles as a new scaffold for androgen receptor ligands. Bioorg Med Chem Lett. 2006;16:3233–3237.
  • Forbes IT, Cooper DG, Dodds EK, et al. Identification of a novel series of selective 5-HT7 receptor antagonists. Bioorg Med Chem Lett. 2003;13:1055–1058.
  • Kasai S, Kamaura M, Kamata M, et al. Melanin-concentrating hormone receptor 1 antagonists: synthesis, structure–activity relationship, docking studies, and biological evaluation of 2,3,4,5-tetrahydro-1H-3-benzazepine derivatives. Bioorg Med Chem. 2011;19:6261–6273.
  • Chujo I, Masuda Y, Fujino K, et al. Synthetic study on novel immunosuppressant KF20444. Bioorg Med Chem. 2001;9:3273–3286.
  • Oshima E, Yanase M, Sone H Method for preparation of 7-(2-fluorophenyl)-1-benzosuberone derivatives. Jpn. Kokai Tokkyo Koho. JP 2000007606 A 20000111. 2000.
  • Oshima E, Yanase M, Sone H Preparation of benzocycloheptenes. Jpn. Kokai Tokkyo Koho JP 2000007619 A 20000111. 2000.
  • Jaffee BD, Jones EA, Loveless SE, et al. The unique immunosuppressive activity of brequinar sodium. Transplant Proc. 1993;25:19–22.
  • Ito T, Okawa A, Sawai T, et al. Potent immunosuppressive effects by a newly synthesized compound KF20444. Transplant Proc. 1999;31:2792–2793.
  • Nomura M, Yamashita K, Takehara MT. et al. Effect of a new immunosuppressive agent, KF20444, in rat cardiac transplantation. Transplant Proc. 1999;31:1206–1262.
  • Farghaly TA, Abdel Hafez NA, Ragab EA, et al. Synthesis, anti-HCV, antioxidant, and peroxynitrite inhibitory activity of fused benzosuberone derivatives. Eur J Med Chem. 2010;45:492–500.
  • Sørensen US, Strøbæk D, Christophersen P, et al. Synthesis and structure-activity relationship studies of 2-(N-substituted)-aminobenzimidazoles as potent negative gating modulators of small conductance Ca2+-activated K+ channels. J Med Chem. 2008;51:7625–7634.
  • Gross MF, Beaudoin S, McNaughton-Smith G, et al. Aryl sulfonamido indane inhibitors of the Kv1.5 ion channel. Bioorg Med Chem Lett. 2007;17:2849–2853.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.