1,302
Views
9
CrossRef citations to date
0
Altmetric
Review

A patent review of IDO1 inhibitors for cancer

, &
Pages 317-330 | Received 10 Jan 2018, Accepted 12 Feb 2018, Published online: 23 Feb 2018

References

  • Litzenburger UM, Opitz CA, Sahm F, et al. Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR. Oncotarget. 2014 Feb 28;5(4):1038–1051.
  • Ochs K, Ott M, Rauschenbach KJ, et al. Tryptophan-2,3-dioxygenase is regulated by prostaglandin E2 in malignant glioma via a positive signaling loop involving prostaglandin E receptor-4. J Neurochem. 2016 Dec 27;136(6):1142–1154.
  • Orabona C, Belladonna ML, Vacca C, et al. Cutting edge: silencing suppressor of cytokine signaling 3 expression in dendritic cells turns CD28-Ig from immune adjuvant to suppressant. J Immunol. 2005 Jun 1;174(11):6582–6586.
  • Pallotta MT, Orabona C, Volpi C, et al. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat Immunol. 2011 Jul 31;12(9):870–878.
  • Munn DH, Zhou M, Attwood JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998 Aug 21;281(5380):1191–1193.
  • Vacchelli E, Aranda F, Eggermont A, et al. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology. 2014;3(10):e957994.
  • Routy JP, Routy B, Graziani GM, et al. The kynurenine pathway is a double-edged sword in immune-privileged sites and in cancer: implications for immunotherapy. Int J Tryptophan Res. 2016;9:67–77.
  • Munn DH, Mellor AL. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest. 2007 May;117(5):1147–1154.
  • Lee GK, Park HJ, Macleod M, et al. Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Immunology. 2002 Dec;107(4):452–460.
  • Fallarino F, Grohmann U, Vacca C, et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 2002 Oct;9(10):1069–1077.
  • Dinatale BC, Murray IA, Schroeder JC, et al. Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling. Toxicol Sci. 2010 May;115(1):89–97.
  • Opitz CA, Litzenburger UM, Sahm F, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011 Oct 05;478(7368):197–203.
  • Nguyen NT, Kimura A, Nakahama T, et al. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19961–19966.
  • Sharma P, Hu-Lieskovan S, Wargo JA, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017 Feb 09;168(4):707–723.
  • Kumar V, Patel S, Tcyganov E, et al. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016 Mar;37(3):208–220.
  • Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015 Apr 3;348(6230):74–80.
  • Vilgelm AE, Johnson DB, Richmond A. Combinatorial approach to cancer immunotherapy: strength in numbers. J Leukoc Biol. 2016 Aug;100(2):275–290.
  • Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 2015 Aug;14(8):561–584.
  • Liu X, Shin N, Koblish HK, et al. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood. 2010 Apr 29;115(17):3520–3530.
  • Spranger S, Koblish HK, Horton B, et al. Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment. J Immunother Cancer. 2014;2:3.
  • Wainwright DA, Chang AL, Dey M, et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res. 2014 Oct 15;20(20):5290–5301.
  • Dolusic E, Frederick R. Indoleamine 2,3-dioxygenase inhibitors: a patent review (2008-2012). Expert Opin Ther Pat. 2013 Oct;23(10):1367–1381.
  • Qian S, Zhang M, Chen Q, et al. IDO as a drug target for cancer immunotherapy: recent developments in IDO inhibitors discovery. RSC Advances. 2016;6(9):7575–7581.
  • Rohrig UF, Majjigapu SR, Vogel P, et al. Challenges in the discovery of indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. J Med Chem. 2015 Dec 24;58(24):9421–9437.
  • Cheong JE, Sun L. Targeting the IDO1/TDO2-KYN-AhR pathway for cancer immunotherapy - challenges and opportunities. Trends Pharmacol Sci. published online November 2017 DOI:10.1016/j.tips.2017.11.007, Dec 2017.
  • Prendergast GC, Malachowski WP, Duhadaway JB, et al. Discovery of IDO1 inhibitors: from bench to bedside. Cancer Res. 2017 Dec 15;77(24):6795–6811.
  • Metz R, Duhadaway JB, Kamasani U, et al. Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan. Cancer Res. 2007 Aug 1;67(15):7082–7087.
  • Crosignani S, Cauwenberghs S, Driessens G, et al. Dérivés de pyrrolidine −2,5-dione, compositions pharmaceutiques et procédés pour une utilisation en tant qu’inhibiteursde de ido1. WO2015173764. 2015.
  • Kraus M, Cauwenberghs S, Crosignani S, et al. Combinations comprising a pyrrolidine-2,5-dione ido1 inhibitor and an anti-body. WO2016181349. 2016.
  • Kraus M, Cauwenberghs S, Crosignani S, et al. Combinations comprising a pyrrolidine-2,5-dione ido1 inhibitor and an anti-body. WO2016181348. 2016.
  • Crosignani S, Bingham P, Bottemanne P, et al. Discovery of a novel and selective indoleamine 2,3-dioxygenase (IDO-1) inhibitor 3-(5-fluoro-1H-indol-3-yl)pyrrolidine-2,5-dione (EOS200271/PF-06840003) and its characterization as a potential clinical candidate. J Med Chem. 2017 Dec 14;60(23):9617–9629.
  • Pilotte L, Larrieu P, Stroobant V, et al. Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2497–2502.
  • Cowley P, Wise A Pharmaceutical compound. WO2015082499. 2015.
  • Cowley P, Wise A Dérivés indolés destinés à être utilisés dans le domaine de la médecine. WO2015150097. 2015.
  • Cowley P, Wise A Pharmaceutical compound. WO2016071293. 2016.
  • Qian S, Wang Z, Yang L, et al. Dérivé de 1h-indazole et utilisation correspondante comme inhibiteur de l’ido. WO2017133258. 2017.
  • Cowley PM, Wise A, Brown TJ, et al. Composé pharmaceutique. WO2017007700. 2017.
  • Wang H, Zhang G, Guo Y, et al. Nouvelles imidazo[1,5-a]pyridines substituées en 5ème ou 8ème position en tant qu’indoleamine et/ou tryptophane 2,3-dioxygénases. WO2016161960. 2016.
  • Palmer BD, Ching LM, Gamage SA. Inhibitors of tryptophan dioxygenases (ido1 and tdo) and their use in therapy. WO2016024233. 2016.
  • Palmer BD, Ching LM Inhibiteurs des tryptophane-dioxygénases (ido1 et tdo) et leur utilisation en thérapie. WO2017034420. 2017.
  • Combs AP, Yue EW, Sparks RB, et al. 1,2,5-Oxadiazoles as inhibitors of indoleamine 2,3-dioxygenase. WO2010005958. 2010.
  • Tao M, Frietze W, Meloni DJ, et al. Process for the synthesis of an indoleamine 2,3-dioxygenase inhibitor. WO2015070007. 2015.
  • Yeleswaram K, Shi JG Pharmaceutical compositions and methods for indoleamine 2,3-dioxygenase inhibition and indications therefor. WO2017079669. 2017.
  • Yue EW, Sparks R, Polam P, et al. INCB24360 (Epacadostat), a highly potent and selective indoleamine-2,3-dioxygenase 1 (IDO1) inhibitor for immuno-oncology. ACS Med Chem Lett. 2017 May 11;8(5):486–491.
  • Wang Z, Guo W, Zhu J, et al. Indoleamine-2,3-dioxygenase inhibitor containing nitrogen alkylated and arylated sulphoxide imines. WO2017152857. 2017.
  • Wang Z, Guo W, Zhu J Sulfamic acid ester as indoleamine-2,3-dioxygenase inhibitor, preparation method therefor and use thereof. WO2017129139. 2017.
  • Han Y, Achab A, Biju P, et al. Novel compounds as indoleamine 2,3-dioxygenase inhibitors. WO2017106062. 2017.
  • Kazmierski WM, De LRM, Samano V Inhibitors of indoleamine 2,3-dioxygenase. WO2017002078. 2017.
  • Bartlett MJ, Codelli JA, Corkey BK, et al. Benzimidazole and imadazopyridine carboximidamide compounds. US20160333009. 2016.
  • Yang F, Gui B, Hu Q, et al. Hydroxy amidine derivative, preparation method and use in medicine thereof. WO2017024996. 2017.
  • Middya S, Yadav DB, Shrivastava R, et al. Nouveaux dérivés iminonitrile. WO2016027241. 2016.
  • Lee JH, Mahendran A, Yao Y, et al. Development of a histone deacetylase 6 inhibitor and its biological effects. Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15704–15709.
  • Jaipuri F, Kesharwani T, Kumar S, et al. Fused imidazole derivatives useful as ido inhibitors. WO2012142237. 2012.
  • Kumar S, Waldo J, Jaipuri F, et al. Tricyclic compounds as inhibitors of immunosuppression mediated by tryptophan metabolization. WO2014159248 (2014)
  • Armer R, Bingham M, Pesnot T, et al. 4h-imidazo[1,5-a]indole derivatives and their use as indoleamine 2,3-dioxygenase (ido) and/or tryptophan 2,3-dioxygenase (td02) modulators. WO2016051181. 2016.
  • Tu W, Xu G, Zhang H, et al. Imidazo isoindole derivative, preparation method therefor and medical use thereof. WO2016169421. 2016.
  • Zhang H, Liu S Hétérocycles utiles comme inhibiteurs d’ido et de tdo. WO2016165613. 2016.
  • Sherer BA Cyclohexyl-ethyl substituted diaza- and triaza-tricyclic compounds as indole-amine-2,3-dioxygenase (ido) antagonists for the treatment of cancer. WO2016037026. 2016.
  • Armer R, Bingham M, Pesnot T 6,7-heterocyclic fused 5h-pyrrolo[1,2-c]imidazole derivatives and their use as indoleamine 2,3-dioxygenase (ido) and/or tryptophan 2,3-dioxygenase (td02) modulators. WO2016059412. 2016.
  • Askew BC, Furuya T Fused imidazole derivatives as ido/tdo inhibitors. WO2017075341. 2017.
  • Gurjar MK, Roychowdhury A, Khaladkar TP, et al. Composés hétérocycliques utiles en tant que modulateurs de l’ido et/ou de la tdo. WO2017149469. 2017.
  • Gurjar MK, Roychowdhury A, Khaladkar TP, et al. Dérivés de pyrroloimidazole ou analogues de ceux-ci utiles, entre autres, dans le traitement du cancer. WO2017134555. 2017.
  • Kanai T, Uchida K, Honma M, et al. Nitrogenated heterocyclic compound. WO2013069765. 2013.
  • Fukuda Y, Kanai T, Nakasato Y, et al. Nitrogen-containing heterocyclic compound having inhibitory effect on production of kynurenine. US2013065905. 2013.
  • Fukuda Y, Kanai T, Nakasato Y, et al. Nitrogen-containing heterocyclic compound having inhibitory effect on production of kynurenine. US20150352106. 2015.
  • Tokunaga A, Ishii T, Mie M, et al. Agent thérapeutique pour tumeur comprenant un inhibiteur de l’ido administré en association avec un anticorps. WO2017010106. 2017.
  • Markwalder JA, Seitz SP, Balog JA, et al. Ido inhibitors. WO2015002918. 2015.
  • Markwalder JA, Balog JA, Huang A, et al. Ido inhibitors. WO2015006520. 2015.
  • JA, Seitz SP Balog JA, et al. Ido inhibitors. 2015. WO2015031295.
  • Balog JA, Huang A, Chen B, et al. Ido inhibitors. WO2014150646. 2014.
  • Balog JA, Huang A, Chen B, et al. Inhibitors of indoleamine 2,3-dioxygenase (ido). WO2014150677. 2014.
  • Balog JA, Cherney EC, Markwalder JA, et al. Ido inhibitors. WO2016210414. 2016.
  • Balog JA, Cherney EC, Guo W, et al. Inhibitors of indoleamine 2,3-dioxygenase for the treatment of cancer. WO2016161269. 2016.
  • Balog JA, Cherney EC, Markwalder JA, et al. Inhibitors of indoleamine 2,3-dioxygenase for the treatment of cancer. WO2016161279. 2016.
  • Balog JA, Guo W, Huang A, et al. Inhibitors of indoleamine 2,3-dioxygenase for the treatment of cancer. WO2016161286. 2016.
  • Chong PY, De LRM, Dickson H, et al. Modulators of indoleamine 2,3-dioxygenase. WO2017051353. 2017.
  • Dai X, Wang Y Inhibiteur de l’indoléamine-2,3-dioxygénase (ido). WO2017139414. 2017.
  • Banerjee M, Middya S, Shrivastava R, et al. Inhibitors of the kynurenine pathway. WO2014186035. 2014.
  • Beck HP, Jaen JC, Osipov M, et al. Immunoregulatory agents. WO2016073770. 2016.
  • Cowley P, Wise A Inhibitors of tryptophan-2,3-dioxygenase or indoleamine-2,3-dioxygenase. WO2016071283. 2016.
  • P, Pharmaceutical Wise A. compound. 2016. WO2016026772.
  • Boyall D, Davis C, Dodd J, et al. Compounds useful as inhibitors of indoleamine 2,3-dioxygenase. WO2014081689 2014.
  • Jacobsen FE, Lewis JA, Cohen SM. The design of inhibitors for medicinally relevant metalloproteins. ChemMedChem. 2007 2;Feb(2):152–171.
  • Yang Y, Hu XQ, Li QS, et al. Metalloprotein inhibitors for the treatment of human diseases. Curr Top Med Chem. 2016;16(4):384–396.
  • Zhang XX, Liao C. Perspectives in medicinal chemistry: metalloprotein inhibitors: what have we made and what is the next step? Curr Top Med Chem. 2016;16(5):467–469.
  • Lewis-Ballester A, Pham KN, Batabyal D, et al. Structural insights into substrate and inhibitor binding sites in human indoleamine 2,3-dioxygenase 1. Nat Commun. 2017 Nov 22;8(1):1693.
  • Wu Y, Xu T, Liu J, et al. Structural insights into the binding mechanism of IDO1 with hydroxylamidine based inhibitor INCB14943. Biochem Biophys Res Commun. 2017 May 27;487(2):339–343.
  • Seegers N, Van Doornmalen AM, Uitdehaag JC, et al. High-throughput fluorescence-based screening assays for tryptophan-catabolizing enzymes. J Biomol Screen. 2014 Oct;19(9):1266–1274.
  • Sugimoto H, Oda S, Otsuki T, et al. Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase. Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2611–2616.
  • Peng YH, Ueng SH, Tseng CT, et al. Important hydrogen bond networks in indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor design revealed by crystal structures of imidazoleisoindole derivatives with IDO1. J Med Chem. 2016 Jan 14;59(1):282–293.
  • Tojo S, Kohno T, Tanaka T, et al. Crystal structures and structure-activity relationships of imidazothiazole derivatives as IDO1 inhibitors. ACS Med Chem Lett. 2014 Oct 9;5(10):1119–1123.
  • Liu Z, Delavan B, Roberts R, et al. Lessons learned from two decades of anticancer drugs. Trends Pharmacol Sci. 2017 Oct;38(10):852–872.
  • Jernigan FE, Sun L. In silico discovery and therapeutic potential of IDO1 and TDO2 inhibitors. Future Med Chem. 2017 Aug;9(12):1309–1311.
  • Smith JR, Evans KJ, Wright A, et al. Novel indoleamine 2,3-dioxygenase-1 inhibitors from a multistep in silico screen. Bioorg Med Chem. 2012 Feb 1;20(3):1354–1363.
  • Belyanskaya SL, Ding Y, Callahan JF, et al. Discovering drugs with DNA-encoded library technology: from concept to clinic with an inhibitor of soluble epoxide hydrolase. Chembiochem. 2017 May 4;18(9):837–842.
  • Chan AI, Mcgregor LM, Jain T, et al. Discovery of a covalent kinase inhibitor from a DNA-encoded small-molecule library × protein library selection. J Am Chem Soc. 2017 Aug 2;139(30):10192–10195.
  • Fernandez-Montalvan AE, Berger M, Kuropka B, et al. Isoform-selective ATAD2 chemical probe with novel chemical structure and unusual mode of action. ACS Chem Biol. 2017 Nov 17;12(11):2730–2736.
  • Yu CP, Song YL, Zhu ZM, et al. Targeting TDO in cancer immunotherapy. Med Oncol. 2017 May;34(5):73.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.