1,415
Views
37
CrossRef citations to date
0
Altmetric
Review

A patent review of BRD4 inhibitors (2013-2019)

, &
Pages 57-81 | Received 02 Oct 2019, Accepted 05 Dec 2019, Published online: 13 Dec 2019

References

  • Arrowsmith CH, Bountra C, Fish PV, et al. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov. 2012;11(5):384–400.
  • Filippakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains. Nature. 2010;468(7327):1067–1073.
  • Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009;325(5942):834–840.
  • Zeng L, Zhou MM. Bromodomain: an acetyl-lysine binding domain. FEBS Lett. 2002;513(1):124–128.
  • Coude MM, Braun T, Berrou J, et al. BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells. Oncotarget. 2015;6(19):17698–17712.
  • Alqahtani A, Choucair K, Ashraf M, et al. Bromodomain and extra-terminal motif inhibitors: a review of preclinical and clinical advances in cancer therapy. Future Sci OA. 2019;5(3):FSO372.
  • Ali I, Choi G, Lee K. BET inhibitors as anticancer agents: a patent review. Recent Pat Anticancer Drug Discov. 2017;12(4):340–364.
  • Bennett RL, Licht JD. Targeting Epigenetics in cancer. Annu Rev Pharmacol Toxicol. 2018;58:187–207.
  • Cochran AG, Conery AR, Sims RJ 3rd. Bromodomains: a new target class for drug development. Nat Rev Drug Discov. 2019;18(8):609–628.
  • Jang MK, Mochizuki K, Zhou M, et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell. 2005;19(4):523–534.
  • Vollmuth F, Blankenfeldt W, Geyer M. Structures of the dual bromodomains of the P-TEFb-activating protein Brd4 at atomic resolution. J Biol Chem. 2009;284(52):36547–36556.
  • Zhou Q, Li T, Price DH. RNA polymerase II elongation control. Annu Rev Biochem. 2012;81:119–143.
  • Wu SY, Chiang CM. The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J Biol Chem. 2007;282(18):13141–13145.
  • Yang Z, Yik JH, Chen R, et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell. 2005;19(4):535–545.
  • Li GQ, Guo WZ, Zhang Y, et al. Suppression of BRD4 inhibits human hepatocellular carcinoma by repressing MYC and enhancing BIM expression. Oncotarget. 2016;7(3):2462–2474.
  • Wu X, Liu D, Tao D, et al. BRD4 regulates EZH2 transcription through upregulation of C-MYC and represents a novel therapeutic target in bladder cancer. Mol Cancer Ther. 2016;15(5):1029–1042.
  • Huang B, Yang XD, Zhou MM, et al. Brd4 coactivates transcriptional activation of NF-kappaB via specific binding to acetylated RelA. Mol Cell Biol. 2009;29(5):1375–1387.
  • Crowe BL, Larue RC, Yuan C, et al. Structure of the Brd4 ET domain bound to a C-terminal motif from gamma-retroviral integrases reveals a conserved mechanism of interaction. Proc Natl Acad Sci U S A. 2016;113(8):2086–2091.
  • Perez-Salvia M, Esteller M. Bromodomain inhibitors and cancer therapy: from structures to applications. Epigenetics. 2017;12(5):323–339.
  • Zuber J, Shi J, Wang E, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478(7370):524–528.
  • Toyoshima M, Howie HL, Imakura M, et al. Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc Natl Acad Sci U S A. 2012;109(24):9545–9550.
  • Dawson MA, Prinjha RK, Dittmann A, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature. 2011;478(7370):529–533.
  • Baker EK, Taylor S, Gupte A, et al. BET inhibitors induce apoptosis through a MYC independent mechanism and synergise with CDK inhibitors to kill osteosarcoma cells. Sci Rep. 2015;5:10120.
  • Wu X, Liu D, Gao X, et al. Inhibition of BRD4 suppresses cell proliferation and induces apoptosis in renal cell carcinoma. Cell Physiol Biochem. 2017;41(5):1947–1956.
  • Latil A, Vidaud D, Valeri A, et al. htert expression correlates with MYC over-expression in human prostate cancer. Int J Cancer. 2000;89(2):172–176.
  • Wang R, Liu W, Helfer CM, et al. Activation of SOX2 expression by BRD4-NUT oncogenic fusion drives neoplastic transformation in NUT midline carcinoma. Cancer Res. 2014;74(12):3332–3343.
  • Wang R, Cao XJ, Kulej K, et al. Uncovering BRD4 hyperphosphorylation associated with cellular transformation in NUT midline carcinoma. Proc Natl Acad Sci U S A. 2017;114(27):E5352–E61.
  • Shu S, Lin CY, He HH, et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature. 2016;529(7586):413–417.
  • Gao Z, Yuan T, Zhou X, et al. Targeting BRD4 proteins suppresses the growth of NSCLC through downregulation of eIF4E expression. Cancer Biol Ther. 2018;19(5):407–415.
  • Segura MF, Fontanals-Cirera B, Gaziel-Sovran A, et al. BRD4 sustains melanoma proliferation and represents a new target for epigenetic therapy. Cancer Res. 2013;73(20):6264–6276.
  • Tan Y, Wang L, Du Y, et al. Inhibition of BRD4 suppresses tumor growth in prostate cancer via the enhancement of FOXO1 expression. Int J Oncol. 2018;53(6):2503–2517.
  • Urano E, Kariya Y, Futahashi Y, et al. Identification of the P-TEFb complex-interacting domain of Brd4 as an inhibitor of HIV-1 replication by functional cDNA library screening in MT-4 cells. FEBS Lett. 2008;582(29):4053–4058.
  • Li Z, Guo J, Wu Y, et al. The BET bromodomain inhibitor JQ1 activates HIV latency through antagonizing Brd4 inhibition of Tat-transactivation. Nucleic Acids Res. 2013;41(1):277–287.
  • Hishiki K, Akiyama M, Kanegae Y, et al. NF-kappaB signaling activation via increases in BRD2 and BRD4 confers resistance to the bromodomain inhibitor I-BET151 in U937 cells. Leuk Res. 2018;74:57–63.
  • Garnier JM, Sharp PP, Burns CJ. BET bromodomain inhibitors: a patent review. Expert Opin Ther Pat. 2014;24(2):185–199.
  • Koblan LW, Buckley DL, Ott CJ, et al. Assessment of Bromodomain Target Engagement by a Series of BI2536 Analogues with Miniaturized BET-BRET. ChemMedChem. 2016;11(23):2575–2581.
  • Long J, Li B, Rodriguez-Blanco J, et al. The BET bromodomain inhibitor I-BET151 acts downstream of smoothened protein to abrogate the growth of hedgehog protein-driven cancers. J Biol Chem. 2014;289(51):35494–35502.
  • Gosmini R, Nguyen VL, Toum J, et al. The discovery of I-BET726 (GSK1324726A), a potent tetrahydroquinoline ApoA1 up-regulator and selective BET bromodomain inhibitor. J Med Chem. 2014;57(19):8111–8131.
  • McDaniel KF, Wang L, Soltwedel T, et al. Discovery of N-(4-(2,4-Difluorophenoxy)-3-(6-methyl-7-oxo-6,7-dihydro-1H-pyrrolo[2,3-c]pyridin −4-yl)phenyl)ethanesulfonamide (ABBV-075/Mivebresib), a potent and orally available Bromodomain and Extraterminal Domain (BET) family bromodomain inhibitor. J Med Chem. 2017;60(20):8369–8384.
  • Ghoshal A, Yugandhar D, Srivastava AK. BET inhibitors in cancer therapeutics: a patent review. Expert Opin Ther Pat. 2016;26(4):505–522.
  • Mitsubishi Tanabe Pharma Corporation. Antitumor agent. WO 2009084693. 2009
  • Oncoethix Gmbh. Methods of treating lymphoma using thienotriazolodiazepine compounds. WO2016026912A1. 2016.
  • Oncoethix Sa. Method of treating non-small-cell lung cancer using pharmaceutical formulation containing thienotriazolodiazepine compounds. WO2015078928A1. 2015.
  • Oncoethix Sa. A Bet-brd inhibitor represents a novel agent for alk positive anaplastic large cell lymphoma. WO201518520A1. 2015.
  • Bayer Pharma AG. 6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepines. WO2013030150A1. 2013.
  • Bayer Pharma AG. 4-substituted pyrrolo- and pyrazolo-diazepines. WO2014128111A1. 2014.
  • Bayer Pharma AG. Bet protein-inhibiting 5-aryl triazole azepines. WO2014048945A1. 2014.
  • Bayer Pharma AG. 2,3-benzodiazepines. WO 2014026997A1. 2014.
  • Bayer Pharma AG. Substituted phenyl-2,3-benzodiazepines. WO 2014202578A1. 2014.
  • Bayer Pharma AG. 6,9-disubstituted 1-phenyl-3H-2,3-benzodiazepines and their use as bromodomain inhibitors. WO 2015121227A1.2015.
  • Bayer Pharma AG. 6-substituted 2,3-benzodiazepines. WO 2015121226A1. 2014
  • Bayer Pharma AG. 1-phenyl-3h-2,3-benzodiazepines and their use as bromodomain inhibitors. WO 2015121268A1. 2015.
  • Bayer Pharma AG. 9-substituted 2,3-benzodiazepines. WO 2015121230A1. 2015.
  • Bayer Pharma AG.1-phenyl-3H-2,3-benzodiazepines and their useas bromodomain inhibitors. WO 2016062688A1. 2016.
  • Bayer Pharma AG. N-sulphoximinophenyl-substituted benzodiazepine derivatives as bet protein inhibitors. WO 2017063959A1. 2017.
  • Bayer Pharma AG. 2-substituted 5-(phenyl)-1,2-dihydro-3h-3-benzazepine-3-carboxamide derivatives as brd4 inhibitors for the treatment of cancer. WO 2017144393A1. 2017.
  • Kainos Medicine, Inc. Bromodomain-inhibiting compounds and pharmaceutical composition comprising same for preventing or treating a cancer. WO2015156601A1. 2015.
  • Kainos Medicine, Inc. Bromodomain-inhibiting compounds and methods to prevent or treat a cancer. WO2016171470A1. 2016.
  • Tensha Therapeutics, Inc. Bromodomain inhibitors. WO2016069578A1. 2016.
  • Shanghai institute of pharmacology. Brd4 inhibitor, preparation and application thereof. WO2018188660A1. 2018.
  • Hivnova Pharmaceuticals Inc. BRD4 Inhibitor. WO2019052519A1. 2019.
  • Abbvie Inc. Fused tetracyclic bromodomain inhibitors. WO2014164780A1. 2014.
  • Abbvie Inc. Tetracyclic bromodomain inhibitors. WO2014139324A1. 2014.
  • Jubilant Biosys Limited. Tricyclic fused derivatives of 1-(cyclo)alkyl pyridin-2-one useful for the treatment of cancer. WO2016157221A1. 2016.
  • Pfizer Inc. Novel heterocyclic compounds as bromodomain inhibitors. WO2013027168A1. 2013.
  • Pfizer Inc. Novel pyrido[2,3-b]pyrazinones as bet-faMily bromodomain inhibitors. WO20162033351A1. 2016.
  • GlaxoSmithKline.Inc. 2,3-disubstituted 1-acyl-4-aMino-1,2,3,4-tetrahydroquinoline derivatives and their use as broModoMain inhibitors. WO2014140076A1. 2014.
  • GlaxoSmithKline.Inc. Tetrahydroquinoline derivatives as bromodomain inhibitors. WO2016038120A1. 2016.
  • GlaxoSmithKline.Inc. Tetrahydroquinoline coMpositions as bet bromodomain inhibitors. WO201574064A1. 2015.
  • Bayer PharMa AG. Modified bet-protein-inhibiting dihydroquinoxalinones and dihydropyridopyrazinones. WO2015004075A1. 2015.
  • Bayer PharMa AG. Substituted dihydropyrido[3,4-b]pyrazinones as dual inhibitors of bet proteins and polo-like kinases. WO2015011084A1. 2015.
  • Bayer PharMa AG. Substituted 3,4-dihydro-pyrido [2,3-b] pyrazin-2 (1H) –one. DE102017005091A1. 2017.
  • Bayer PharMa AG. Substitulerte 3,4-dihydroquinoxalin-2 (1H) –one. DE102017005089A1. 2017.
  • Shanghai institute of pharmacology. Dihydroquinoxaline bromodomain recognition protein inhibitor, preparation Method and use thereof. WO2018161876A1. 2018.
  • Shanghai institute of pharmacology. Inhibitors of bromodomain-containing protein 4 (brd4). WO2018112037A1. 2018.
  • Boehringer Ingelheim Inc. Dihydroquinazolinone analogues as BRD4 inhibitors. WO2014154762A1. 2014.
  • China pharmaceutical University. Bromodomain protein divalent inhibitors and preparation method and applications thereof. CN107056771A. 2017.
  • Nuevolution A/S. Compounds active towards bromodomains. WO2016016316A1. 2016.
  • Shanghai institute of pharmacology. The application of 8-hydroxyquinoline class drug or its salt in the drug that preparation is used to treat disease relevant to BRD4. CN109106715A. 2018.RVX Therapeutics Inc. Cyclic amines as bromodomain inhibitors. US20140142102A1.2 014.
  • China pharmaceutical university. Preparation method and application of pyrrole [4,3,2-de] quinoline-2-(1H)-ketone BRD4 protein inhibitor. CN105732624A. 2016
  • Abbvie Inc. Bromodomain inhibitors. WO2013097601A1. 2013
  • Abbvie Inc. Bromodomain inhibitors. WO2014206150A1. 2014
  • Abbvie Inc. Bromodomain inhibitors. WO2015085925A1. 2015
  • Abbvie Inc. Bromodomain inhibitors. WO2015089075A1. 2015
  • Abbvie Inc. Bromodomain inhibitors. WO2018068282A1. 2018
  • Abbvie Inc. Bromodomain inhibitors. WO2018068283A1. 2018
  • Quanticel Pharmaceuticals, Inc. Bromodomain inhibitors. WO2015058160A1. 2015
  • Celgene Quanticel Research, Inc. Bromodomain inhibitors. WO2016168682A1. 2016
  • Celgene Quanticel Research, Inc. Therapeutic compounds. US20170298040A1. 2017
  • Boehringer Ingelheim International Gmbh. Triazolopyrazine. WO2014076237A1. 2014
  • Boehringer Ingelheim International Gmbh. Triazolopyrazine derivatives as brd4 inhibitors. WO2015067770A1. 2015
  • Korea institute of chemistry. Novel [1,2,4]triazolo[4, 3-a]quinoxaline derivative, method for preparing same, and pharmaceutical composition for preventing or treating bet protein-related diseases, containing same as active ingredient. WO2018139876A1. 2018.
  • Korea institute of chemistry. Phenylamino-[1,2,4]triazolo[4,3-a]quinoxaline derivative for treating BET protein-related disease, and method for the preparation thereof. KR2018106597A1. 2018.
  • Novartis AG Pyrazolopyrrolidine Derivatives and their Use in the Treatment of Disease. US2014034990A1. 2014.
  • Neomed Institute. Substituted [1,2,4]triazolo[4,3-a]pyridines, their preparation and their use as pharmaceuticals. WO2017127930A1. 2017.
  • Shandong Luoxin pharmaceutical, LTD. Nitrogen-containing heterocyclic compounds, preparation method therefor, pharmaceutical composition thereof, and applications thereof. WO2018086585A1.2018.
  • Abbvie Inc. Isoindolone derivatives. WO2013158952A1. 2013.
  • Abbvie Inc. Pyrrole amide inhibitors. WO2014165127A1. 2014.
  • China Pharmaceutical University. Preparation method and purpose of pyrrolone BRD4 protein inhibitor. CN107739370A. 2017.
  • Novartis AG Pyrrolopyrrolone derivatives and their use as BET inhibitors. WO2015075665A1. 2015.
  • Gilead Sciences Inc. Synthesis of a compound that modulates the activity of bromodomain-containing proteins. US2018017991A1. 2017.
  • Zenith Epigenetics Corp. Novel bicyclic bromodomain inhibitors. WO2015002754A2. 2015.
  • Zenith Epigenetics Corp. Novel substituted bicyclic compounds as bromodomain inhibitors. WO2015004533A2. 2015.
  • Zenith Epigenetics Corp. Substituted pyridines as bromodomain inhibitors. WO2015004534A2. 2015.
  • Zenith Epigenetics Corp. Substituted pyridinones as bromodomain inhibitors. WO2016087936A1. 2016.
  • Zenith Epigenetics Corp. Substituted pyridines as bromodomain inhibitors. WO2016087942A1. 2016
  • Zenith Epigenetics Corp. Substituted bicyclic compounds as bromodomain inhibitors. WO2016097870A1. 2016.
  • Zenith Epigenetics Corp. Inhibitors of bromodomains. WO2016097863A1. 2016.
  • Zenith Epigenetics Corp. Substituted heterocycles as bromodomain inhibitors. WO2016092375A1. 2016.
  • Liu Z, Wang P, Chen H, et al. Drug discovery targeting bromodomain-containing protein 4. J Med Chem. 2017;60(11):4533–4558.
  • Winter GE, Buckley DL, Paulk J, et al. DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science. 2015;348(6241):1376–1381.
  • Gadd MS, Testa A, Lucas X, et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat Chem Biol. 2017 May;13(5):514–521.
  • Lu J, Qian Y, Altieri M, et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem Biol. 2015;22(6):755–763.
  • Hines J, Lartigue S, Dong H, et al. MDM2-Recruiting PROTAC Offers Superior, Synergistic Antiproliferative Activity via Simultaneous Degradation of BRD4 and Stabilization of p53. Cancer Res. 2019 Jan 1;79(1):251–262.
  • Zhou B, Hu J, Xu F, et al. Discovery of a small-molecule degrader of Bromodomain and Extra-Terminal (BET) proteins with picomolar cellular potencies and capable of achieving tumor regression. J Med Chem. 2018 Jan 25;61(2):462–481.
  • Heerboth S, Lapinska K, Snyder N, et al. Use of epigenetic drugs in disease: an overview. Genet Epigenet. 2014;6:9–19.
  • Devaiah BN, Case-Borden C, Gegonne A, et al. BRD4 is a histone acetyltransferase that evicts nucleosomes from chromatin. Nat Struct Mol Biol. 2016;23(6):540–548.
  • Devaiah BN, Lewis BA, Cherman N, et al. BRD4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II carboxy-terminal domain. Proc Natl Acad Sci U S A. 2012;109(18):6927–6932.
  • Lu T, Hu JC, Lu WC, et al. Identification of small molecule inhibitors targeting the SMARCA2 bromodomain from a high-throughput screening assay. Acta Pharmacol Sin. 2018;39(9):1544–1552.
  • Lu W, Zhang R, Jiang H, et al. Computer-aided drug design in epigenetics. Front Chem. 2018;6:57.
  • Zhang D, Han J, Lu W, et al. Discovery of alkoxy benzamide derivatives as novel BPTF bromodomain inhibitors via structure-based virtual screening. Bioorg Chem. 2019;86:494–500.
  • Baud MGJ, Lin-Shiao E, Cardote T, et al. Chemical biology. A bump-and-hole approach to engineer controlled selectivity of BET bromodomain chemical probes. Science. 2014;346(6209):638–641.
  • Abbvie Inc. Bromodomain inhibitors. WO 2017177955 A1.
  • Law RP, Atkinson SJ, Bamborough P, et al. Discovery of tetrahydroquinoxalines as bromodomain and Extra-Terminal Domain (BET) inhibitors with selectivity for the second bromodomain. J Med Chem. 2018;61(10):4317–4334.
  • Albrecht BK, Gehling VS, Hewitt MC, et al. Identification of a benzoisoxazoloazepine inhibitor (CPI-0610) of the Bromodomain and Extra-Terminal (BET) family as a candidate for human clinical trials. J Med Chem. 2016;59(4):1330–1339.
  • Meyer N, Penn LZ. Reflecting on 25 years with MYC. Nat Rev Cancer. 2008;8(12):976–990.
  • Jin X, Yan Y, Wang D, et al. DUB3 promotes BET inhibitor resistance and cancer progression by deubiquitinating BRD4. Mol Cell. 2018;71(4):592–605 e4.
  • Rathert P, Roth M, Neumann T, et al. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature. 2015;525(7570):543–547.
  • Fong CY, Gilan O, Lam EY, et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature. 2015;525(7570):538–542.
  • Qin AC, Li Y, Zhou LN, et al. Dual PI3K-BRD4 inhibitor SF1126 inhibits colorectal cancer cell growth in vitro and in vivo. Cell Physiol Biochem. 2019;52(4):758–768.
  • Deng M, Wang J, Chen Y, et al. Combination of SF1126 and gefitinib induces apoptosis of triple-negative breast cancer cells through the PI3K/AKT-mTOR pathway. Anticancer Drugs. 2015;26(4):422–427.
  • Chen H, Zhou X, Wang A, et al. Evolutions in fragment-based drug design: the deconstruction-reconstruction approach. Drug Discov Today. 2015;20(1):105–113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.