421
Views
16
CrossRef citations to date
0
Altmetric
Review

A 2018–2019 patent review of metallo beta-lactamase inhibitors

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 541-555 | Received 06 Feb 2020, Accepted 06 May 2020, Published online: 20 May 2020

References

  • Bush K, Bradford PA. β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med. 2016;6(8):a025247.
  • Llarrull LI, Testero SA, Fisher JF, et al. The future of the β-lactams. Curr Opin Microbiol. 2010;13(5):551–557.
  • Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther. 2015;40(4):277.
  • Patel G, Bonomo R. “Stormy waters ahead”: global emergence of carbapenemases. Front Microbiol. 2013;4:48.
  • Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–327.
  • Somboro AM, Sekyere JO, Amoako DG, et al. Diversity and proliferation of metallo-β-lactamases: a clarion call for clinically effective metallo-β-lactamase inhibitors. Appl Environ Microbiol. 2018;84(18):e00698–18.
  • Bush K. Past and present perspectives on β-lactamases. Antimicrob Agents Chemother. 2018;62(10):e01076–18.
  • Crass RL, Pai MP. Pharmacokinetics and Pharmacodynamics of β‐Lactamase Inhibitors. Pharmacother J Human Pharmacol Drug Ther. 2019;39(2):182–195.
  • J-M F, Duez C, Ghuysen J-M. Occurrence of a serine residue in the penicillin-binding site of the exocellular DD-carboxy-peptidase-transpeptidase from Streptomyces R61. FEBS Lett. 1976;70(1–2):257–260.
  • Spratt BG. Penicillin-binding Proteins and the Future of Beta-Lactam Antibiotics The Seventh Fleming Lecture. J Gen Microbiol. 1983;129(1247–1):260.
  • Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med. 2012;18(5):263–272.
  • Munita JM, Arias CA. Mechanisms of antibiotic resistance. Virulence Mech Bact Pathog. 2016; 481–511.
  • Ambler RP. The structure of β-lactamases. Phil Transac Royal Soc London B Biol Sci. 1980;289(1036):321–331.
  • Arjomandi OK, Kavoosi M, Adibi H. Synthesis and investigation of inhibitory activities of imidazole derivatives against the metallo-β-lactamase IMP-1. Bioorg Chem. 2019;92:103277.
  • Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 2017;215(suppl_1):S28–S36.
  • Papp-Wallace KM, Bonomo RA. New β-lactamase inhibitors in the clinic. Infect Dis Clin. 2016;30(2): 441–464.
  • Tehrani KH, Martin NI. β-lactam/β-lactamase inhibitor combinations: an update. MedChemComm. 2018;9(9):1439–1456.
  • Mojica M, Bonomo A, Fast R. B1-Metallo-β-lactamases: where do we stand? Curr Drug Targets. 2016;17(9):1029–1050.
  • Palzkill T. Metallo‐β‐lactamase structure and function. Ann N Y Acad Sci. 2013;1277(1):91–104.
  • Richards CA, Kaye KS, Jacobs RF. CDC calls for immediate action to control spread of CRE in hospitals. Infect Dis Children. 2013;26(4):6.
  • Yong D, Toleman MA, Giske CG, et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046–5054.
  • Lauretti L, Riccio ML, Mazzariol A, et al. Cloning and characterization of bla VIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother. 1999;43(7):1584–1590.
  • King DT, Strynadka NC. Targeting metallo-β-lactamase enzymes in antibiotic resistance. Future Med Chem. 2013;5(11):1243–1263.
  • Saavedra MJ, Peixe L, Sousa JC, et al. Sfh-I, a subclass B2 metallo-β-lactamase from a Serratia fonticola environmental isolate. Antimicrob Agents Chemother. 2003;47(7):2330–2333.
  • Walsh TR, Gamblin S, Emery DC, et al. Enzyme kinetics and biochemical analysis of ImiS, the metallo-β-lactamase from Aeromonas sobria 163a. J Antimicrob Chemother. 1996;37(3):423–431.
  • Massidda O, Rossolini GM, Satta G. The Aeromonas hydrophila cphA gene: molecular heterogeneity among class B metallo-beta-lactamases. J Bacteriol. 1991;173(15):4611–4617.
  • Bellais S, Aubert D, Naas T, et al. Molecular and biochemical heterogeneity of class B carbapenem-hydrolyzing β-lactamases in Chryseobacterium meningosepticum. Antimicrob Agents Chemother. 2000;44(7):1878–1886.
  • Walsh TR, Hall L, Assinder SJ, et al. Sequence analysis of the L1 metallo-β-lactamase from Xanthomonas maltophilia. Biochim Biophys Acta. 1994;1218(2):199–201.
  • Livermore D. Evolution of beta-lactamase inhibitors. Intensive Care Med. 1994;20:S10–3.
  • Papp-Wallace KM, Nguyen NQ, Jacobs MR, et al., Strategic approaches to overcome resistance against Gram-negative pathogens using β-lactamase inhibitors and β-lactam enhancers: activity of three novel diazabicyclooctanes WCK 5153, zidebactam (WCK 5107), and WCK 4234. J Med Chem. 61(9): 4067–4086. 2018. .
  • Moya B, Barcelo IM, Bhagwat S, et al., Potent β-lactam enhancer activity of zidebactam and WCK 5153 against Acinetobacter baumannii, including carbapenemase-producing clinical isolates. Antimicrob Agents Chemother. 61(11): e01238–17. 2017. .
  • Case Study: FT. Cefditoren pivoxil: an oral prodrug of cefditoren. Prodrugs: Springer; 2007. p. 1185–1194.
  • Reading C, Cole M. Clavulanic acid: a beta-lactamase-inhibiting beta-lactam from Streptomyces clavuligerus. Antimicrob Agents Chemother. 1977;11(5):852–857.
  • English AR, Retsema JA, Girard AE, et al. CP-45,899, a beta-lactamase inhibitor that extends the antibacterial spectrum of beta-lactams: initial bacteriological characterization. Antimicrob Agents Chemother. 1978;14(3):414–419.
  • Fisher J, Belasco J, Charnas R. et al. β-Lactamase inactivation by mechanism-based reagents. Phil Transac Royal Soc London B Biol Sci. 1980;289(1036):309–319.
  • Talbot GH, Jezek A, Murray BE, et al. The infectious diseases society of america’s 10×’20 initiative (10 new systemic antibacterial agents US food and drug administration approved by 2020): is 20×’20 a possibility? Clinl Infect Dis. 2019;69(1):1–11.
  • Cheng Z, Thomas CA, Joyner AR, et al. MBLinhibitors. com, a website resource offering information and expertise for the continued development of metallo–lactamase inhibitors. Biomolecules. 2020;10(3):459.
  • World Health Organization (WHO). Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline, including tuberculosis (No. WHO/EMP/IAU/2017.11) Geneva, Switzerland. 2017.
  • King AM, Reid-Yu SA, Wang W, et al. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature. 2014;510(7506):503–506.
  • Azumah R, Dutta J, Somboro A, et al. In vitro evaluation of metal chelators as potential metallo‐β‐lactamase inhibitors. J Appl Microbiol. 2016;120(4):860–867.
  • Everett M, Sprynski N, Coelho A, et al. Discovery of a novel metallo-β-lactamase inhibitor that potentiates meropenem activity against carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2018;62(5):e00074–18.
  • Oelschlaeger P, Ai N, DuPrez KT, et al. Evolving carbapenemases: can medicinal chemists advance one step ahead of the coming storm? J Med Chem. 2010;53(8):3013–3027.
  • Hecker SJ, Reddy KR, Lomovskaya O, et al. Discovery of cyclic boronic acid QPX7728, an ultra-broad-spectrum inhibitor of serine and metallo beta-lactamases. J Med Chem. 2020. doi:10.1021/acs.jmedchem.9b01976
  • Yao J, Ling H, Liao S. Studies on the active constituents of poly althia nemoralisa. ETDC [J]. Acta Pharmaceutica Sinica. 1994; 11.
  • Marcheselli M, Conzo F, Mauri M, et al. Novel antifouling agent—Zinc pyrithione: short-and long-term effects on survival and reproduction of the marine polychaete Dinophilus gyrociliatus. Aquatic Toxicol. 2010;98(2):204–210.
  • Marcheselli M, Azzoni P, Mauri M. Novel antifouling agent-zinc pyrithione: stress induction and genotoxicity to the marine mussel Mytilus galloprovincialis. Aquatic Toxicol. 2011;102(1–2):39–47.
  • Sham YY, Muthyala R, Shin W-S, inventors; USA. assignee. Therapeutic methods and combinations comprising substituted 1-hydroxypyridine-2 (1H)-thiones and an antibacterial agent patent US20180369217A1. 2018.
  • Muthyala R, Rastogi N, Shin WS, et al. Cell permeable vanX inhibitors as vancomycin re-sensitizing agents. Bioorg Med Chem Lett. 2014;24(11):2535–2538.
  • Levy N, Bruneau J-M, Le Rouzic E, et al. Structural basis for E. coli penicillin binding protein (PBP) 2 inhibition, a platform for drug design [10.1021/acs.jmedchem.9b00338]. J Med Chem. 2019;62(9):4742–4754.
  • Caravano A, Chasset S, Chevreuil F, et al., inventors; Mutabilis, Fr. assignee. Preparation of oxodiazabicyclooctane derivatives as β-lactamase inhibitors useful in prevention, mono- and combination therapy of bacterial infections patent WO2016156348A1. 2016.
  • Barbion J, Caravano A, Chasset S, et al., inventors; Mutabilis, Fr. assignee. Preparation of 1,6-diazabicyclo[3.2.1]oct-3-en-7-one derivatives as β-lactamase inhibitors and their use in preventing or treating bacterial infections patent WO2016177862A1. 2016.
  • Bonnard D, Brias J, Barbion J, et al., inventors; Mutabilis, Fr. assignee. Preparation of novel heterocyclic compounds and their use in preventing or treating bacterial infections patent WO2018141986A1. 2018.
  • Bonnard D, Le Rouzic E, Moreau F, inventors; Mutabilis, Fr. assignee. Composition comprising antibiotic compound and an heterocyclic compound and their use in preventing or treating bacterial infections patent WO2018060484A1. 2018.
  • Hecker SJ, Reddy RK, Glinka T, et al. Boronic acid derivatives and therapeutic uses thereof. Google Patents; US10294249B2. 2019
  • Wu S, Xu H, Hu X, inventors; Wuhan Vision Pharmaceutical Technology Co., Ltd., Peop. Rep. China. assignee. Beta-lactamase inhibitor patent US20190048027A1. 2019.
  • Krajnc A, Brem J, Hinchliffe P, et al. Bicyclic Boronate VNRX-5133 Inhibits Metallo- and Serine-β-Lactamases. J Med Chem. 2019 Sep 26;62(18):8544–8556.
  • Bonomo R, Prati F, Caselli E, et al., inventors; Case Western Reserve University, USA. assignee. Compositions and methods of treating of bacterial infections with triazolylmethyl boronic acid β-lactamase inhibitors and β-lactam antibiotics patent US20180256614A1. 2018.
  • Yoshizumi A, Ishii Y, Livermore DM, et al. Efficacies of calcium–EDTA in combination with imipenem in a murine model of sepsis caused by Escherichia coli with NDM-1 β-lactamase. J Infect Chemother. 2013;19(5):992–995.
  • Yusof Y, Tan DTC, Arjomandi OK, et al. Captopril analogues as metallo-β-lactamase inhibitors. Bioorg Med Chem Lett. 2016 Mar 15;26(6):1589–1593.
  • Somboro AM, Tiwari D, Bester LA, et al. NOTA: a potent metallo-β-lactamase inhibitor. J Antimicrob Chemother. 2015;70(5):1594–1596.
  • Bass LA, Wang M, Welch MJ, et al. In vivo transchelation of copper-64 from TETA-octreotide to superoxide dismutase in rat liver. Bioconjug Chem. 2000;11(4):527–532.
  • Sun H, Kao RYT, Wang R, et al. Bismuth (III) Compounds and Methods Thereof. Google Patents; US20180085335A1. 2018
  • Wang R, Lai T-P, Gao P, et al., Bismuth antimicrobial drugs serve as broad-spectrum metallo-β-lactamase inhibitors. Nat Commun. 9(1): 439. 2018. .
  • Rongved P, Aastrand OAH, Samuelsen O, et al.inventors; Universitetet I Oslo, Norway; Golding, Louise. assignee. Preparation of pyridinyl-nicotinamide sugars as antibacterial agents patent WO2018033719A1. 2018.
  • Panduwawala T, Brandt P, Wang D, et al., inventors; Oxford University Innovation Limited, UK. assignee. Preparation of pyrroles, indoles, imidazoles and related 5-membered heterocycles as inhibitors of metallo-β-lactamases patent WO2018215799A1. 2018.
  • Gising J, Lindstrom S, Antonov D, et al., inventors; Oxford University Innovation Limited, UK. assignee. Preparation of thienopyrroles, pyrrolopyrazoles and related fused heterocycles as inhibitors of metallo-beta-lactamases patent WO2018215800A1. 2018.
  • Pasternak A, Dong S, Scott JD, et al., inventors; Merck Sharp & Dohme Corp., USA. assignee. Preparation of substituted 1H- and 2H-tetrazol-5-yl sulfonamide and sulfone compounds as metallo-β-lactamase inhibitors patent WO2019018186A1. 2019.
  • Pasternak A, Dong S, Scott JD, et al., inventors; Merck Sharp & Dohme Corp., USA. assignee. Metallo-beta-lactamase inhibitors and methods of use thereof patent WO2019135920A1. 2019.
  • Davies DT, Leiris S, Sprynski N, et al., inventors; Antabio SAS, Fr. assignee. Preparation of thiazole sulfonamides for treating bacterial infections patent WO2019016393A1. 2019.
  • Chandradhish Ghosh PS, Issa R, Haldar J. Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends Microbiol. 2019;27(4):323–338.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.