308
Views
11
CrossRef citations to date
0
Altmetric
Review

Therapeutic modulators of the serotonin 5-HT4 receptor: a patent review (2014-present)

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 495-508 | Received 20 Mar 2020, Accepted 07 May 2020, Published online: 18 Jun 2020

References

  • Dumuis A, Bouhelal R, Sebben M, et al. A nonclassical 5-hydroxytryptamine receptor positively coupled with adenylate cyclase in the central nervous system. Mol Pharmacol. 1988;34(6):880–887.
  • Bockaert J, Claeysen S, Compan V, et al. 5-HT4 receptors: history, molecular pharmacology and brain functions. Neuropharmacology. 2008;55(6):922–931.
  • Brudeli B, Moltzau LR, Nguyen CHT, et al. Synthesis and pharmacological properties of a new hydrophilic and orally bioavailable 5-HT4 antagonist. Eur J Med Chem. 2013;64:629–637.
  • Bureau R, Boulouard M, Dauphin F, et al. Review of 5-HT4R ligands: state of art and clinical applications. Curr Top Med Chem. 2010;10(5):527–553.
  • Kamiya K, Niwa R, Morishima M, et al. Molecular determinants of HERG channel block by terfenadine and cisapride. J Pharmacol Sci. 2008;108(3):301–307.
  • Cole P, Rabasseda X. Tegaserod: a serotonin 5-HT4 receptor agonist for treatment of constipation-predominant irritable bowel syndrome. Drugs Today. 2004;40(12):1013.
  • Loughlin J, Quinn S, Rivero E, et al. Tegaserod and the risk of cardiovascular ischemic events: an observational Cohort study. J Cardiovasc Pharmacol Ther. 2010;15(2):151–157.
  • In Brief: tegaserod (Zelnorm) returns. Med Lett Drugs Ther. 2019;61(1571):72. PMID: 31169806.
  • Conlon K, Maeyer JHD, Bruce C, et al. Nonclinical cardiovascular studies of prucalopride, a highly selective 5-hydroxytryptamine 4 receptor agonist. J Pharmacol Exp Ther. 2018;364(2):156–169.
  • Hamatani T, Noda N, Takagaki T, et al. Thorough QT/QTc study shows that a novel 5-HT4 receptor partial agonist minesapride has no effect on QT prolongation. Clin Pharmacol Drug Dev. 2020. DOI:10.1002/cpdd.778.
  • Eglen RM, Wong EHF, Dumuis A, et al. Central 5-HT4 receptors. Trends Pharmacol Sci. 1995;16(11):391–398.
  • Reynolds GP, Mason SL, Meldrum A, et al. 5-Hydroxytryptamine (5-HT)4 receptors in post mortem human brain tissue: distribution, pharmacology and effects of neurodegenerative diseases. Br J Pharmacol. 1995;114(5):993–998.
  • Consolo S, Arnaboldi S, Giorgi S, et al. 5-HT4 receptor stimulation facilitates acetylcholine release in rat frontal cortex. Neuroreport. 1994;5(10):1230–1232.
  • Kilbinger H, Wolf D. Effects of 5-HT4 receptor stimulation on basal and electrically evoked release of acetylcholine from Guinea-Pig Myenteric Plexus. Naunyn Schmiedebergs Arch Pharmacol. 1992;345(3):270–275. .
  • Lucas G, Matteo VD, Deurwaerdère PD, et al. Neurochemical and electrophysiological evidence that 5-HT4 receptors exert a state-dependent facilitatory control in vivo on nigrostriatal, but not mesoaccumbal, dopaminergic function. Eur J Neurosci. 2001;13(5):889–898.
  • Steward LJ, Ge J, Stowe RL, et al. Ability of 5-HT4 receptor ligands to modulate rat striatal dopamine release in vitro and in vivo. Br J Pharmacol. 1996;117(1):55–62.
  • Ge J, Barnes NM. 5-HT4 receptor-mediated modulation of 5-HT release in the rat hippocampus in vivo. Br J Pharmacol. 1996;117(7):1475–1480.
  • Lezoualc’h F. 5-HT4 receptor and Alzheimer’s disease: the amyloid connection. Exp Neurol. 2007;205(2):325–329.
  • Russo O, Cachard-Chastel M, Rivière C, et al. Design, synthesis, and biological evaluation of new 5-HT4 receptor agonists: application as amyloid cascade modulators and potential therapeutic utility in Alzheimer’s disease. J Med Chem. 2009;52(8):2214–2225.
  • Cho S, Hu Y. Activation of 5-HT4 receptors inhibits secretion of β-amyloid peptides and increases neuronal survival. Exp Neurol. 2007;203(1):274–278.
  • Lelong V, Lhonneur L, Dauphin F, et al. BIMU 1 and RS 67333, two 5-HT4 receptor agonists, modulate spontaneous alternation deficits induced by scopolamine in the mouse. Naunyn Schmiedebergs Arch Pharmacol. 2003;367(6):621–628.
  • Moser PC, Bergis OE, Jegham S, et al. SL65.0155, A novel 5-Hydroxytryptamine4 receptor partial agonist with potent cognition-enhancing properties. J Pharmacol Exp Ther. 2002;302(2):731–741.
  • Mohler EG, Shacham S, Noiman S, et al. VRX-03011, a novel 5-HT4 agonist, enhances memory and hippocampal acetylcholine efflux. Neuropharmacology. 2007;53(4):563–573.
  • Samuels BA, Mendez-David I, Faye C, et al. Serotonin 1A and serotonin 4 receptors: essential mediators of the neurogenic and behavioral actions of antidepressants. Neuroscientist. 2016;22(1):26–45.
  • Madsen K, Torstensen E, Holst KK, et al. Familial risk for major depression is associated with lower striatal 5-HT4 receptor binding. Int J Neuropsychopharmacol. 2015;18(1):pyu034-pyu034.
  • Murphy SE, Cates AN, De Gillespie AL, et al. Translating the promise of 5HT4 receptor agonists for the treatment of depression. Psychol Med. 2020;1–10. DOI:10.1017/S0033291720000604.
  • Murphy SE, Wright LC, Browning M, et al. Role for 5-HT4 receptors in human learning and memory. Psychol Med. 2020;1–9. DOI:10.1017/S0033291719002836.
  • Ishii T, Kinoshita K. Therapeutic agent for cognitive dysfunction accompanying parkinson disease. JP2018168072A, November 1, 2018.
  • Pierce D, Corcoran M, Velinova M, et al. A phase 1 randomized study evaluating the effect of omeprazole on the pharmacokinetics of a novel 5-hydroxytryptamine receptor 4 agonist, revexepride (SSP-002358), in healthy adults. Drug Des Devel Ther. 2015;9:1257–1268.
  • Selective 5-HT4 receptor agonist and Proton Pump Inhibitor (PPI) in subjects with Gastroesophageal Reflux Disease (GERD) - full text view. ClinicalTrials.gov; [cited 2020 Mar 9]. https://clinicaltrials.gov/ct2/show/NCT01472939
  • Maeyer JHD, Schuurkes JAJ. Pro-cognitive compound. WO2014083003A1, June 5, 2014.
  • Takahashi N, Yamamoto T, Shimada K, et al. 5-HT4 receptor agonist for gastroparesis. WO2015174098A1, November 19, 2015.
  • Takahashi N. 5-HT4 receptor agonist as a prokinetic agent. US20140051726A1, February 20, 2014.
  • Numata T, Sudo M, Sun X. Benzisoxazole derivative salt. WO2015178020A1, November 26, 2015.
  • Timothy N, Sridhar D, Claire L, et al. Systems pharmacology modeling in neuroscience: prediction and outcome of PF-04995274, a 5-HT4 partial agonist, in a clinical scopolamine impairment trial. Adv Alzheimers Dis. 2013;83–98. DOI:10.4236/aad.2013.23012.
  • Noguchi H, Waizumi N. (R)-4-((4-((4-(Tetrahydrofuran-3-Yloxy)Benzo[d]Isoxazol-3-Yloxy)Methyl)Piperidin-1-Yl)Methyl)Tetrahydro-2h-Pyran-4-Ol, a Partial Agonist of 5-HT4 Receptors. WO2011101774A1, August 25, 2011.
  • Alisi MA, Cazzolla N, Costi R, et al. Compound with serotoninergic activity, process for preparing it and pharmaceutical composition comprising it. US8686147B2, April 1, 2014.
  • Guglielmotti A, Polenzani L, Alisi A, et al. Use of indazole derivatives for the treatment of neuropathic pain. US7638534B2, December 29, 2009.
  • Dhanoa DS. Deuterium-enriched pyridinonecarboxamides and derivatives. US20150080377A1, March 19, 2015.
  • Timmins GS. Deuterated drugs; where are we now? Expert Opin Ther Pat. 2014;24(10):1067–1075.
  • Johnson DE, Drummond E, Grimwood S, et al. The 5-hydroxytryptamine4 receptor agonists prucalopride and PRX-03140 increase acetylcholine and histamine levels in the rat prefrontal cortex and the power of stimulated hippocampal θ oscillations. J Pharmacol Exp Ther. 2012;341(3):681–691.
  • Mikami S, Uematsu M. Agent for preventing or treating agent bovine gastrointestinal disease by mosapride citrate. JP2017014113A, January 19, 2017.
  • Kim SH, Im WB, Choi SH, et al. Benzamide derivatives. US9221790B2, December 29, 2015.
  • Dallemagne P, Rochais C, Lecoutey C, et al. Composes inhibiteurs de l’acetylcholinesterase et agonistes des recepteurs serotoninergiques 5ht4, a effet promnesiant, leurs procedes de preparation et compositions pharmaceutiques les contenant. WO2014195593A2, December 11, 2014.
  • Cheng L, Riggs-Sauthier J, Anand NK. Oligomer-containing benzamide-based compounds. WO2014043707A1, March 20, 2014.
  • Ghelardini C, Galeotti N, Casamenti F, et al. Central cholinergic antinociception induced by 5HT4 Agonists: BIMU 1 and BIMU 8. Life Sci. 1996;58(25):2297–2309.
  • Brodney MA, Johnson DE, Sawant-Basak A, et al. Identification of multiple 5-HT4 partial agonist clinical candidates for the treatment of Alzheimer’s disease. J Med Chem. 2012;55(21):9240–9254.
  • Ohshiro H, Fujiuchi A, Take Y. 5-HT4 receptor agonists for the treatment of dementia. US8980922B2, March 17, 2015.
  • Kawarabayashi T, Younkin LH, Saido TC, et al. Age-dependent changes in brain, CSF, and plasma amyloid β protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci. 2001;21(2):372–381.
  • Ikeda J, Nakamura T, Otaka H. Oxadiazole derivative and pharmaceutical use of same. WO2014092104A1, June 19, 2014.
  • Nirogi R, Mohammed AR, Shinde AK, et al. Indazole compounds as 5-HT4 receptor agonists. WO2015092804A1, June 25, 2015.
  • Nirogi R, Mohammed AR, Yarlagadda S, et al. Heteroaryl compounds as 5-HT4 receptor ligands. US9079894B2, July 14, 2015.
  • Nirogi R, Mohammed AR, Jasti V. Process for large scale production of 1-Isopropyl-3-{5- [1-(3-Methoxypropyl) Piperidin-4-Yl]-[1,3,4]Oxadiazol-2-Yl}- 1h-Indazole Oxalate. WO2016027277A1, February 25, 2016.
  • Nirogi R, Shinde AK, Mohammed AR, et al. Amide compounds as 5-HT4 receptor agonists. WO2016128990A1, August 18, 2016.
  • Lecoutey C, Hedou D, Freret T, et al. Design of donecopride, a dual serotonin subtype 4 receptor agonist/acetylcholinesterase inhibitor with potential interest for Alzheimer’s disease treatment. Proc Natl Acad Sci. 2014;111(36):E3825–30.
  • Suzuki T, Imanishi N, Itahana H, et al. Novel benzamide derivative and medicinal composition containing the same. WO1995018104A1, July 6, 1995.
  • Takadoi M, Kobayashi F, Sekiguchi H. Novel benzamide derivatives. WO1997010207A1, March 20, 1997.
  • Nirogi R, Shinde AK, Jasti V. 5-Amino-Quinoline-8-carboxamide derivatives as 5-HT4 receptor agonists. WO2014147636A1, September 25, 2014.
  • Iwanaga Y, Miyashita N, Mizutani F, et al. Stimulatory effect of N-[4-[2-(Dimethylamino)-Ethoxy]Benzyl]-3, 4-dimethoxybenzamide hydrochloride (HSR-803) on normal and delayed gastrointestinal propulsion. Jpn J Pharmacol. 1991;56(3):261–269.
  • Sim JY, Cha MH, Yoon YA, et al. Bicyclic derivative containing pyrimidine ring, and preparation method therefor. WO2014189331A1, November 27, 2014.
  • Khoo JH, Lee DB, Lee JS, et al. Novel processes for preparing a diaminopyrimidine derivative or acid addition salt thereof. WO2019221522A1, November 21, 2019.
  • Ahn KK, Cha MH, Jung EJ, et al. Diaminopyrimidine derivatives and processes for the preparation thereof. WO2012115480A2, August 30, 2012.
  • Hussain Z, Lee YJ, Yang H, et al. H. YH12852, a potent and highly selective 5-HT4 receptor agonist, significantly improves both upper and lower gastrointestinal motility in a Guinea Pig model of postoperative ileus. Neurogastroenterol Motil. 2017;29(10):e13094.
  • Lalut J, Payan H, Davis A, et al. C. rational design of novel benzisoxazole derivatives with acetylcholinesterase inhibitory and serotoninergic 5-HT 4 receptors activities for the treatment of Alzheimer’s disease. Sci Rep. 2020;10(1):1–11.
  • Nirogi R, Mohammed AR, Shinde AK, et al. Synthesis, structure–activity relationships, and preclinical evaluation of heteroaromatic amides and 1,3,4-oxadiazole derivatives as 5-HT4 receptor partial agonists. J Med Chem. 2018;61(11):4993–5008.
  • Rochais C, Lecoutey C, Hamidouche K, et al. Donecopride, a Swiss army knife with potential against Alzheimer’s disease. Br J Pharmacol. 2020;177(9):1988–2005.
  • Giannoni P, Gaven F, De Bundel D, et al. Early administration of RS 67333, a specific 5-HT4 receptor agonist, prevents amyloidogenesis and behavioral deficits in the 5XFAD mouse model of Alzheimer’s disease. Front Aging Neurosci. 2013;5. DOI:10.3389/fnagi.2013.00096.
  • Dileep Kumar JS, John Mann J. PET tracers for serotonin receptors and their applications. Cent Nerv Syst Agents Med Chem. 2014;14(2):96–112.
  • Claeysen S, Sebben M, Becamel C, et al. Novel brain-specific 5-HT4 receptor splice variants show marked constitutive activity: role of the C-terminal intracellular domain. Mol Pharmacol. 1999;55(5):910–920.
  • Bockaert J, Claeysen S, Compan V, et al. 5-HT4 receptors, a place in the sun: act two. Curr Opin Pharmacol. 2011;11(1):87–93.
  • Pascual-Brazo J, Castro E, Díaz Á, et al. Modulation of neuroplasticity pathways and antidepressant-like behavioural responses following the short-term (3 and 7 Days) administration of the 5-HT4 receptor agonist RS67333. Int J Neuropsychopharmacol. 2012;15(5):631–643.
  • Hagena H, Manahan-Vaughan D. The serotonergic 5-HT4 receptor: a unique modulator of hippocampal synaptic information processing and cognition. Neurobiol Learn Mem. 2017;138:145–153.
  • Freret T, Bouet V, Quiedeville A, et al. Synergistic effect of acetylcholinesterase inhibition (Donepezil) and 5-HT4 receptor activation (RS67333) on object recognition in mice. Behav Brain Res. 2012;230(1):304–308.
  • Yahiaoui S, Hamidouche K, Ballandonne C, et al. Design, synthesis, and pharmacological evaluation of multitarget-directed ligands with both serotonergic subtype 4 receptor (5-HT4R) Partial Agonist and 5-HT6R Antagonist Activities, as Potential Treatment of Alzheimer’s Disease. Eur J Med Chem. 2016;121:283–293.
  • Lanthier C, Payan H, Liparulo I, et al. Novel multi target-directed ligands targeting 5-HT4 receptors with in cellular antioxidant properties as promising leads in Alzheimer’s disease. Eur J Med Chem. 2019;182:111596.
  • Hatat B, Yahiaoui S, Lecoutey C, et al. A novel in vivo anti-amnesic agent, specially designed to express both acetylcholinesterase (AChE) inhibitory, serotonergic subtype 4 receptor (5-HT4R) agonist and serotonergic subtype 6 receptor (5-HT6R) inverse agonist activities, with a potential interest against Alzheimer’s disease. Front Aging Neurosci. 2019;11. DOI:10.3389/fnagi.2019.00148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.