294
Views
13
CrossRef citations to date
0
Altmetric
Review

An overview of ghrelin O-acyltransferase inhibitors: a literature and patent review for 2010-2019

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 581-593 | Received 10 Mar 2020, Accepted 27 May 2020, Published online: 21 Jun 2020

References

  • Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–660.
  • Korbonits M, Bustin SA, Kojima M, et al. The expression of the growth hormone secretagogue receptor ligand ghrelin in normal and abnormal human pituitary and other neuroendocrine tumors. J Clin Endocrinol Metab. 2001;86(2):881–887.
  • Date Y, Kojima M, Hosoda H, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology. 2000;141(11):4255–4261.
  • Gnanapavan S, Kola B, Bustin SA, et al. The tissue distribution of the mrna of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metab. 2002;87(6):2988–2991.
  • Takaya K, Ariyasu H, Kanamoto N, et al. Ghrelin strongly stimulates growth hormone release in humans. J Clin Endocrinol Metab. 2000;85(12):4908–4911.
  • Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407(6806):908–913.
  • Wren AM, Small CJ, Abbott CR, et al. Ghrelin causes hyperphagia and obesity in rats. Diabetes. 2001;50(11):2540–2547.
  • Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in the central regulation of feeding. Nature. 2001;409(6817):194–198.
  • Egido EM, Rodriguez-Gallardo J, Silvestre RA, et al. Inhibitory effect of ghrelin on insulin and pancreatic somatostatin secretion. Eur J Endocrinol. 2002;146(2):241–244.
  • Reimer MK, Pacini G, Ahren B. Dose-dependent inhibition by ghrelin of insulin secretion in the mouse. Endocrinology. 2003;144(3):916–921.
  • McFarlane MR, Brown MS, Goldstein JL, et al. Induced ablation of ghrelin cells in adult mice does not decrease food intake, body weight, or response to high-fat diet. Cell Metab. 2014;20(1):54–60.
  • Abizaid A, Hougland JL. Ghrelin signaling: GOAT and GHS-R1a take a leap in complexity. Trends Endocrinol Metab. 2020;31(2):107–117.
  • Cowley MA, Smith RG, Diano S, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 2003;37(4):649–661.
  • Chen HY, Trumbauer ME, Chen AS, et al. Orexigenic action of peripheral ghrelin is mediated by neuropeptide y and agouti-related protein. Endocrinology. 2004;145(6):2607–2612.
  • Kohno D, Sone H, Tanaka S, et al. AMP-activated protein kinase activates neuropeptide Y neurons in the hypothalamic arcuate nucleus to increase food intake in rats. Neurosci Lett. 2011;499(3):194–198.
  • Kohno D, Sone H, Minokoshi Y, et al. Ghrelin raises [Ca2+]i via AMPK in hypothalamic arcuate nucleus NPY neurons. Biochem Biophys Res Commun. 2008;366(2):388–392.
  • Andersson U, Filipsson K, Abbott CR, et al. AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem. 2004;279(13):12005–12008.
  • Anderson KA, Ribar TJ, Lin F, et al. Hypothalamic camkk2 contributes to the regulation of energy balance. Cell Metab. 2008;7(5):377–388.
  • Zhao TJ, Liang G, Li RL, et al. Ghrelin O-acyltransferase (GOAT) is essential for growth hormone-mediated survival of calorie-restricted mice. Proc Natl Acad Sci U S A. 2010;107(16):7467–7472.
  • Xie TY, Ngo ST, Veldhuis JD, et al. Effect of deletion of ghrelin-O-acyltransferase on the pulsatile release of growth hormone in mice. J Neuroendocrinol. 2015;27(12):872–886.
  • Tschop M, Statnick MA, Suter TM, et al. GH-releasing peptide-2 increases fat mass in mice lacking NPY: indication for a crucial mediating role of hypothalamic agouti-related protein. Endocrinology. 2002;143(2):558–568.
  • Broglio F, Gottero C, Prodam F, et al. Non-acylated ghrelin counteracts the metabolic but not the neuroendocrine response to acylated ghrelin in humans. J Clin Endocrinol Metab. 2004;89(6):3062–3065.
  • Diano S, Farr SA, Benoit SC, et al. Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci. 2006;9(3):381–388.
  • Hsu TM, Suarez AN, Kanoski SE. Ghrelin: a link between memory and ingestive behavior. Physiol Behav. 2016;162:10–17.
  • Serrenho D, Santos SD, Carvalho AL. The role of ghrelin in regulating synaptic function and plasticity of feeding-associated circuits. Front Cell Neurosci. 2019;13:205.
  • Panagopoulos VN, Ralevski E. The role of ghrelin in addiction: a review. Psychopharmacology (Berl). 2014;231(14):2725–2740.
  • Lutter M, Sakata I, Osborne-Lawrence S, et al. The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress. Nat Neurosci. 2008;11(7):752–753.
  • Meyer RM, Burgos-Robles A, Liu E, et al. A ghrelin-growth hormone axis drives stress-induced vulnerability to enhanced fear. Mol Psychiatry. 2014;19(12):1284–1294.
  • Harmatz ES, Stone L, Lim SH, et al. Central ghrelin resistance permits the overconsolidation of fear memory. Biol Psychiatry. 2017;81(12):1003–1013.
  • Yousufzai M, Harmatz ES, Shah M, et al. Ghrelin is a persistent biomarker for chronic stress exposure in adolescent rats and humans. Transl Psychiatry. 2018;8(1):74.
  • Cameron KO, Bhattacharya SK, Loomis AK. Small molecule ghrelin receptor inverse agonists and antagonists. J Med Chem. 2014;57(21):8671–8691.
  • McGovern KR, Darling JE, Hougland JL. Progress in small molecule and biologic therapeutics targeting ghrelin signaling. Mini Rev Med Chem. 2016;16(6):465–480.
  • Collden G, Tschop MH, Muller TD. Therapeutic potential of targeting the ghrelin pathway. Int J Mol Sci. 2017;18(4):798.
  • Howick K, Griffin BT, Cryan JF, et al. From belly to brain: targeting the ghrelin receptor in appetite and food intake regulation. Int J Mol Sci. 2017;18(2):273.
  • Avau B, Carbone F, Tack J, et al. Ghrelin signaling in the gut, its physiological properties, and therapeutic potential. Neurogastroenterol Motil. 2013;25(9):720–732.
  • Chollet C, Meyer K, Beck-Sickinger AG. Ghrelin–a novel generation of anti-obesity drug: design, pharmacomodulation and biological activity of ghrelin analogues. J Pept Sci. 2009;15(11):711–730.
  • Costantino L, Barlocco D. New perspectives on the development of antiobesity drugs. Future Med Chem. 2015;7(3):315–336.
  • Yang J, Brown MS, Liang G, et al. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell. 2008;132(3):387–396.
  • Gutierrez JA, Solenberg PJ, Perkins DR, et al. Ghrelin octanoylation mediated by an orphan lipid transferase. Proc Natl Acad Sci U S A. 2008;105(17):6320–6325.
  • Kojima M, Kangawa K. Ghrelin: structure and function. Physiol Rev. 2005;85(2):495–522.
  • Darling JE, Zhao F, Loftus RJ, et al. Structure-activity analysis of human ghrelin O-acyltransferase reveals chemical determinants of ghrelin selectivity and acyl group recognition. Biochemistry. 2015;54(4):1100–1110.
  • Gahete MD, Cordoba-Chacon J, Salvatori R, et al. Metabolic regulation of ghrelin O-acyl transferase (GOAT) expression in the mouse hypothalamus, pituitary, and stomach. Mol Cell Endocrinol. 2010;317(1–2):154–160.
  • Zhu X, Cao Y, Voogd K, et al. On the processing of proghrelin to ghrelin. J Biol Chem. 2006;281(50):38867–38870.
  • Delhanty PJ, Huisman M, Julien M, et al. The acylated (AG) to unacylated (UAG) ghrelin ratio in esterase inhibitor-treated blood is higher than previously described. Clin Endocrinol (Oxf). 2015;82(1):142–146.
  • De Vriese C, Gregoire F, Lema-Kisoka R, et al. Ghrelin degradation by serum and tissue homogenates: identification of the cleavage sites. Endocrinology. 2004;145(11):4997–5005.
  • Satou M, Sugimoto H. The study of ghrelin deacylation enzymes. Methods Enzymol. 2012;514:165–179.
  • Brimijoin S, Chen VP, Pang YP, et al. Physiological roles for butyrylcholinesterase: a BCHE-ghrelin axis. Chem Biol Interact. 2016;259(Pt B):271–275.
  • Chen VP, Gao Y, Geng L, et al. Butyrylcholinesterase regulates central ghrelin signaling and has an impact on food intake and glucose homeostasis. Int J Obes (Lond). 2017;41(9):1413–1419.
  • Gauna C, Meyler FM, Janssen JA, et al. Administration of acylated ghrelin reduces insulin sensitivity, whereas the combination of acylated plus unacylated ghrelin strongly improves insulin sensitivity. J Clin Endocrinol Metab. 2004;89(10):5035–5042.
  • Gauna C, Kiewiet RM, Janssen JAMJL, et al. Unacylated ghrelin acts as a potent insulin secretagogue in glucose-stimulated conditions. Am J Physiol-Endoc M. 2007;293(3):E697–E704.
  • Taylor MS, Ruch TR, Hsiao PY, et al. Architectural organization of the metabolic regulatory enzyme ghrelin O-acyltransferase. J Biol Chem. 2013;288(45):32211–32228.
  • Matevossian A, Resh MD. Membrane topology of hedgehog acyltransferase. J Biol Chem. 2015;290(4):2235–2243.
  • Konitsiotis AD, Jovanovic B, Ciepla P, et al. Topological analysis of hedgehog acyltransferase, a multipalmitoylated transmembrane protein. J Biol Chem. 2015;290(6):3293–3307.
  • Joyce CW, Shelness GS, Davis MA, et al. ACAT1 and ACAT2 membrane topology segregates a serine residue essential for activity to opposite sides of the endoplasmic reticulum membrane. Mol Biol Cell. 2000;11(11):3675–3687.
  • Lin S, Lu X, Chang CC, et al. Human acyl-coenzyme A: cholesterolacyltransferase expressed in chinese hamster ovary cells: membrane topology and active site location. Mol Biol Cell. 2003;14(6):2447–2460.
  • Pagac M, de la Mora HV, Duperrex C, et al. Topology of 1-acyl-sn-glycerol-3-phosphate acyltransferases SLC1 and ALE1 and related membrane-bound O-acyltransferases (MBOATs) of saccharomyces cerevisiae. J Biol Chem. 2011;286(42):36438–36447.
  • Ma D, Wang Z, Merrikh CN, et al. Crystal structure of a membrane-bound O-acyltransferase. Nature. 2018;562(7726):286–290.
  • Campana MB, Irudayanathan FJ, Davis TR, et al. The ghrelin O-acyltransferase structure reveals a catalytic channel for transmembrane hormone acylation. J Biol Chem. 2019;294(39):14166–14174.
  • Guan C, Niu Y, Chen S-C, et al. Inhibition mechanism of human sterol O-acyltransferase 1 by competitive inhibitor. bioRxiv. 2020. DOI:10.1101/2020.01.07.897124
  • Perez-Tilve D, Heppner K, Kirchner H, et al. Ghrelin-induced adiposity is independent of orexigenic effects. Faseb J. 2011;25(8):2814–2822.
  • Hopkins AL, Nelson TA, Guschina IA, et al. Unacylated ghrelin promotes adipogenesis in rodent bone marrow via ghrelin O-acyl transferase and GHS-R1a activity: evidence for target cell-induced acylation. Sci Rep. 2017;7:45541.
  • Shiiya T, Nakazato M, Mizuta M, et al. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J Clin Endocrinol Metab. 2002;87(1):240–244.
  • Tschop M, Weyer C, Tataranni PA, et al. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001;50(4):707–709.
  • English PJ, Ghatei MA, Malik IA, et al. Food fails to suppress ghrelin levels in obese humans. J Clin Endocrinol Metab. 2002;87(6):2984–2987.
  • Barnett BP, Hwang Y, Taylor MS, et al. Glucose and weight control in mice with a designed ghrelin O-acyltransferase inhibitor. Science. 2010;330(6011):1689–1692.
  • Wellman MK, Patterson ZR, MacKay H, et al. Novel regulator of acylated ghrelin, cf801, reduces weight gain, rebound feeding after a fast, and adiposity in mice. Front Endocrinol. 2015;6:144.
  • Soriano-Guillen L, Barrios V, Campos-Barros A, et al. Ghrelin levels in obesity and anorexia nervosa: effect of weight reduction or recuperation. J Pediatr. 2004;144(1):36–42.
  • Misra M, Miller KK, Herzog DB, et al. Growth hormone and ghrelin responses to an oral glucose load in adolescent girls with anorexia nervosa and controls. J Clin Endocrinol Metab. 2004;89(4):1605–1612.
  • Misra M, Klibanski A. Endocrine consequences of anorexia nervosa. Lancet Diabetes Endocrinol. 2014;2(7):581–592.
  • Fabbri AD, Deram S, Kerr DS, et al. Ghrelin and eating disorders. Arch Clin Psychiatry. 2015;42(2):52–62.
  • Schorr M, Miller KK. The endocrine manifestations of anorexia nervosa: mechanisms and management. Nat Rev Endocrinol. 2017;13(3):174–186.
  • Smitka K, Papezova H, Vondra K, et al. The role of “mixed” orexigenic and anorexigenic signals and autoantibodies reacting with appetite-regulating neuropeptides and peptides of the adipose tissue-gut-brain axis: relevance to food intake and nutritional status in patients with anorexia nervosa and bulimia nervosa. Int J Endocrinol. 2013;2013:483145.
  • Berner LA, Brown TA, Lavender JM, et al. Neuroendocrinology of reward in anorexia nervosa and bulimia nervosa: beyond leptin and ghrelin. Mol Cell Endocrinol. 2019;497:110320.
  • Monteleone AM, Castellini G, Volpe U, et al. Neuroendocrinology and brain imaging of reward in eating disorders: a possible key to the treatment of anorexia nervosa and bulimia nervosa. Prog Neuropsychopharmacol Biol Psychiatry. 2018;80(Pt B):132–142.
  • Hotta M, Ohwada R, Akamizu T, et al. Ghrelin increases hunger and food intake in patients with restricting-type anorexia nervosa: a pilot study. Endocr J. 2009;56(9):1119–1128.
  • Neary NM, Small CJ, Wren AM, et al. Ghrelin increases energy intake in cancer patients with impaired appetite: acute, randomized, placebo-controlled trial. J Clin Endocrinol Metab. 2004;89(6):2832–2836.
  • Haruta I, Fuku Y, Kinoshita K, et al. One-year intranasal application of growth hormone releasing peptide-2 improves body weight and hypoglycemia in a severely emaciated anorexia nervosa patient. J Cachexia Sarcopenia Muscle. 2015;6(3):237–241.
  • Strasser F, Lutz TA, Maeder MT, et al. Safety, tolerability and pharmacokinetics of intravenous ghrelin for cancer-related anorexia/cachexia: a randomised, placebo-controlled, double-blind, double-crossover study. Br J Cancer. 2008;98(2):300–308.
  • Hassouna R, Labarthe A, Zizzari P, et al. Actions of agonists and antagonists of the ghrelin/GHS-R pathway on GH secretion, appetite, and cFos activity. Front Endocrinol (Lausanne). 2013;4:25.
  • Holm VA, Cassidy SB, Butler MG, et al. Prader-willi syndrome: consensus diagnostic criteria. Pediatrics. 1993;91(2):398–402.
  • Lindgren AC, Barkeling B, Hagg A, et al. Eating behavior in Prader-Willi syndrome, normal weight, and obese control groups. J Pediatr. 2000;137(1):50–55.
  • DelParigi A, Tschop M, Heiman ML, et al. High circulating ghrelin: a potential cause for hyperphagia and obesity in Prader-Willi syndrome. J Clin Endocrinol Metab. 2002;87(12):5461–5464.
  • Haqq AM, Farooqi IS, O’Rahilly S, et al. Serum ghrelin levels are inversely correlated with body mass index, age, and insulin concentrations in normal children and are markedly increased in Prader-Willi syndrome. J Clin Endocrinol Metab. 2003;88(1):174–178.
  • Cummings DE, Clement K, Purnell JQ, et al. Elevated plasma ghrelin levels in Prader-Willi syndrome. Nat Med. 2002;8(7):643–644.
  • Feigerlova E, Diene G, Conte-Auriol F, et al. Hyperghrelinemia precedes obesity in Prader-Willi syndrome. J Clin Endocrinol Metab. 2008;93(7):2800–2805.
  • Kweh FA, Miller JL, Sulsona CR, et al. Hyperghrelinemia in Prader-Willi syndrome begins in early infancy long before the onset of hyperphagia. Am J Med Genet A. 2015;167A(1):69–79.
  • Kuppens RJ, Diene G, Bakker NE, et al. Elevated ratio of acylated to unacylated ghrelin in children and young adults with Prader-Willi syndrome. Endocrine. 2015;50(3):633–642.
  • Beauloye V, Diene G, Kuppens R, et al. High unacylated ghrelin levels support the concept of anorexia in infants with Prader-Willi syndrome. Orphanet J Rare Dis. 2016;11(1):56.
  • Haqq AM, Stadler DD, Rosenfeld RG, et al. Circulating ghrelin levels are suppressed by meals and octreotide therapy in children with Prader-Willi syndrome. J Clin Endocrinol Metab. 2003;88(8):3573–3576.
  • De Waele K, Ishkanian SL, Bogarin R, et al. Long-acting octreotide treatment causes a sustained decrease in ghrelin concentrations but does not affect weight, behaviour and appetite in subjects with Prader-Willi syndrome. Eur J Endocrinol. 2008;159(4):381–388.
  • Lin D, Wang Q, Ran H, et al. Abnormal response to the anorexic effect of GHS-R inhibitors and exenatide in male snord116 deletion mouse model for Prader-Willi syndrome. Endocrinology. 2014;155(7):2355–2362.
  • Wise RA. Brain reward circuitry: insights from unsensed incentives. Neuron. 2002;36(2):229–240.
  • Martel P, Fantino M. Mesolimbic dopaminergic system activity as a function of food reward: a microdialysis study. Pharmacol Biochem Behav. 1996;53(1):221–226.
  • Volkow ND, Wang GJ, Maynard L, et al. Brain dopamine is associated with eating behaviors in humans. Int J Eat Disord. 2003;33(2):136–142.
  • Wise RA. The role of reward pathways in the development of drug dependence. Pharmacol Ther. 1987;35(1–2):227–263.
  • Nestler EJ. Is there a common molecular pathway for addiction? Nat Neurosci. 2005;8(11):1445–1449.
  • Jerlhag E, Egecioglu E, Dickson SL, et al. Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addict Biol. 2007;12(1):6–16.
  • Kraus T, Schanze A, Groschl M, et al. Ghrelin levels are increased in alcoholism. Alcohol Clin Exp Res. 2005;29(12):2154–2157.
  • Kim DJ, Yoon SJ, Choi B, et al. Increased fasting plasma ghrelin levels during alcohol abstinence. Alcohol Alcohol. 2005;40(1):76–79.
  • Leggio L, Ferrulli A, Cardone S, et al. Ghrelin system in alcohol-dependent subjects: role of plasma ghrelin levels in alcohol drinking and craving. Addict Biol. 2012;17(2):452–464.
  • Akkisi Kumsar N, Dilbaz N. Relationship between craving and ghrelin, adiponectin, and resistin levels in patients with alcoholism. Alcohol Clin Exp Res. 2015;39(4):702–709.
  • Hillemacher T, Kraus T, Rauh J, et al. Role of appetite-regulating peptides in alcohol craving: an analysis in respect to subtypes and different consumption patterns in alcoholism. Alcohol Clin Exp Res. 2007;31(6):950–954.
  • Addolorato G, Capristo E, Leggio L, et al. Relationship between ghrelin levels, alcohol craving, and nutritional status in current alcoholic patients. Alcohol Clin Exp Res. 2006;30(11):1933–1937.
  • Koopmann A, Bach P, Schuster R, et al. Ghrelin modulates mesolimbic reactivity to alcohol cues in alcohol-addicted subjects: a functional imaging study. Addict Biol. 2019;24(5):1066–1076.
  • Bach P, Bumb JM, Schuster R, et al. Effects of leptin and ghrelin on neural cue-reactivity in alcohol addiction: two streams merge to one river? Psychoneuroendocrinology. 2019;100:1–9.
  • Davis KW, Wellman PJ, Clifford PS. Augmented cocaine conditioned place preference in rats pretreated with systemic ghrelin. Regul Pept. 2007;140(3):148–152.
  • Wellman PJ, Hollas CN, Elliott AE. Systemic ghrelin sensitizes cocaine-induced hyperlocomotion in rats. Regul Pept. 2008;146(1–3):33–37.
  • Jang JK, Kim WY, Cho BR, et al. Microinjection of ghrelin in the nucleus accumbens core enhances locomotor activity induced by cocaine. Behav Brain Res. 2013;248:7–11.
  • Tessari M, Catalano A, Pellitteri M, et al. Correlation between serum ghrelin levels and cocaine-seeking behaviour triggered by cocaine-associated conditioned stimuli in rats. Addict Biol. 2007;12(1):22–29.
  • Jerlhag E, Egecioglu E, Dickson SL, et al. Ghrelin receptor antagonism attenuates cocaine- and amphetamine-induced locomotor stimulation, accumbal dopamine release, and conditioned place preference. Psychopharmacology (Berl). 2010;211(4):415–422.
  • Havlickova T, Charalambous C, Lapka M, et al. Ghrelin receptor antagonism of methamphetamine-induced conditioned place preference and intravenous self-administration in rats. Int J Mol Sci. 2018;19(10):2925–2946.
  • Jerlhag E, Engel JA. Ghrelin receptor antagonism attenuates nicotine-induced locomotor stimulation, accumbal dopamine release and conditioned place preference in mice. Drug Alcohol Depend. 2011;117(2–3):126–131.
  • Wellman PJ, Clifford PS, Rodriguez J, et al. Pharmacologic antagonism of ghrelin receptors attenuates development of nicotine induced locomotor sensitization in rats. Regul Pept. 2011;172(1–3):77–80.
  • Sustkova-Fiserova M, Jerabek P, Havlickova T, et al. E.15 - ghrelin receptor antagonism attenuates morphine-induced accumbal dopamine release and behavioral stimulation in rats. 15th Biennial Meeting of the European Behavioural Pharmacology Society; 2013 Sept 6–9; La Rochelle; 2013.
  • Sustkova-Fiserova M, Jerabek P, Havlickova T, et al. Ghrelin and endocannabinoids participation in morphine-induced effects in the rat nucleus accumbens. Psychopharmacology (Berl). 2016;233(3):469–484.
  • D’Cunha TM, Chisholm A, Hryhorczuk C, et al. A role for leptin and ghrelin in the augmentation of heroin seeking induced by chronic food restriction. Psychopharmacology (Berl). 2020;237(3):787–800.
  • Sustkova-Fiserova M, Puskina N, Havlickova T, et al. Ghrelin receptor antagonism of fentanyl-induced conditioned place preference, intravenous self-administration, and dopamine release in the nucleus accumbens in rats. Addict Biol. 2019;e12845. DOI:10.1111/adb.12845:e12845
  • Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383(9922):1068–1083.
  • Ferrannini E, Mari A. Beta-cell function in type 2 diabetes. Metabolism. 2014;63(10):1217–1227.
  • DeFronzo RA, Ferrannini E, Groop L, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1:15019.
  • Heppner KM, Tong J. Mechanisms in endocrinology: regulation of glucose metabolism by the ghrelin system: multiple players and multiple actions. Eur J Endocrinol. 2014;171(1):R21–R32.
  • Delhanty PJ. van der Lely AJ. Ghrelin and glucose homeostasis. Peptides. 2011;32(11):2309–2318.
  • van der Lely AJ. Ghrelin and new metabolic frontiers. Horm Res. 2009;71(Suppl 1):129–133.
  • van der Lely AJ, Tschop M, Heiman ML, et al. Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr Rev. 2004;25(3):426–457.
  • Broglio F, Arvat E, Benso A, et al. Ghrelin, a natural GH secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans. J Clin Endocrinol Metab. 2001;86(10):5083–5086.
  • Yada T, Damdindorj B, Rita RS, et al. Ghrelin signalling in beta-cells regulates insulin secretion and blood glucose. Diabetes Obes Metab. 2014;16(Suppl 1):111–117.
  • Dezaki K, Hosoda H, Kakei M, et al. Endogenous ghrelin in pancreatic islets restricts insulin release by attenuating Ca2+ signaling in beta-cells: implication in the glycemic control in rodents. Diabetes. 2004;53(12):3142–3151.
  • Barazzoni R, Zanetti M, Ferreira C, et al. Relationships between desacylated and acylated ghrelin and insulin sensitivity in the metabolic syndrome. J Clin Endocrinol Metab. 2007;92(10):3935–3940.
  • Granata R, Settanni F, Julien M, et al. Des-acyl ghrelin fragments and analogues promote survival of pancreatic beta-cells and human pancreatic islets and prevent diabetes in streptozotocin-treated rats. J Med Chem. 2012;55(6):2585–2596.
  • Delhanty PJ, Huisman M, Baldeon-Rojas LY, et al. Des-acyl ghrelin analogs prevent high-fat-diet-induced dysregulation of glucose homeostasis. Faseb J. 2013;27(4):1690–1700.
  • Tong J, Prigeon RL, Davis HW, et al. Ghrelin suppresses glucose-stimulated insulin secretion and deteriorates glucose tolerance in healthy humans. Diabetes. 2010;59(9):2145–2151.
  • Jiang H, Zhang X, Chen X, et al. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chem Rev. 2018;118(3):919–988.
  • Yang J, Zhao T-J, Goldstein JL, et al. Inhibition of ghrelin O-acyltransferase (GOAT) by octanoylated pentapeptides. Proc Natl Acad Sci U S A. 2008;105(31):10750–10755.
  • Yoneyama-Hirozane M, Deguchi K, Hirakawa T, et al. Identification and characterization of a new series of ghrelin O-acyl transferase inhibitors. SLAS Discovery. 2018;23(2):154–163.
  • Darling JE, Prybolsky EP, Sieburg M, et al. A fluorescent peptide substrate facilitates investigation of ghrelin recognition and acylation by ghrelin O-acyltransferase. Anal Biochem. 2013;437(1):68–76.
  • Hougland J, Darling J, inventors; Syracuse University, USA, assignee. Fluorescence assay for ghrelin O-acyltransferase activity. United States patent US 20140212904 B2. 2015 Aug 25.
  • Zhao F, Darling JE, Gibbs RA, et al. A new class of ghrelin O-acyltransferase inhibitors incorporating triazole-linked lipid mimetic groups. Bioorg Med Chem Lett. 2015;25(14):2800–2803.
  • Hougland J, inventor; Syracuse University, USA, assignee. Inhibitors targeting human ghrelin O-acyltransferase. Unites States patent US 20150018520 A1. 2015 May 17.
  • Cole PA, Barnett BP, Hwang Y, et al., inventors; The Johns Hopkins University, USA, assignee. Methods for synthesis and uses of peptide-coenzyme a conjugates as inhibitors of ghrelin O-acyltransferase as potential therapeutic agents for obesity and diabetes. World patent WO2010039461A2. 2010 Apr 8.
  • Cole PA, Barnett BP, Hwang Y, et al., inventors; The Johns Hopkins University, USA, assignee. Methods for synthesis and uses of inhibitors of ghrelin O-acyltransferase as potential therapeutic agents for obesity and diabetes. United States patent US 20110257086 A1. 2011 Oct 20.
  • Teubner BJW, Garretson JT, Hwang Y, et al. Inhibition of ghrelin O-acyltransferase attenuates food deprivation-induced increases in ingestive behavior. Horm Behav. 2013;63(4):667–673.
  • Bowers CY, Coy DH, Hocart SJ, et al., inventors; The Administrators of the Tulane Educational Fund, USA; McGill University, assignee. Methods of inhibiting the ghrelin/growth hormone secretagogue receptor pathway and uses thereof. World patent WO 2010132580 A2. 2010 Nov 18.
  • Garner AL, Janda KD. A small molecule antagonist of ghrelin O-acyltransferase (GOAT). Chem Commun. 2011;47(26):7512–7514.
  • Garner AL, Janda KD. Cat-elcca: a robust method to monitor the fatty acid acyltransferase activity of ghrelin O-acyltransferase (GOAT). Angew Chem Int Ed. 2010;49(50):9630–9634.
  • Hollibaugh RA. Defining a minimal pharmacophore to selectively inhibit mboat4 [dissertation]. Los Angeles (CA): UCLA; 2016.
  • Hollibaugh RA, Liu H, Elmajian N, et al., editors. Small molecule inhibitors of ghrelin O-acyl transferase. 243rd ACS National Meeting & Exposition; 2012 Mar 25–29; San Diego (CA): American Chemical Society; 2012.
  • Harran PG, Brown MS, Goldstein JL, et al., inventors; University of Texas, USA, assignee. Small molecule inhibitors of ghrelin O-acyltransferase and therapeutic use thereof. United States patent US 20100086955 A1. 2010 Apr 8.
  • Harran PG, Hollibaugh RA, Liu H, inventors; University of California, USA, assignee. Small lipopeptidomimetic inhibitors of ghrelin O-acyl transferase. World patent WO 2016044467 A1. 2016 Mar 24.
  • McGovern-Gooch KR, Mahajani NS, Garagozzo A, et al. Synthetic triterpenoid inhibition of human ghrelin O-acyltransferase: the involvement of a functionally required cysteine provides mechanistic insight into ghrelin acylation. Biochemistry. 2017;56(7):919–931.
  • Sieburg MA, Cleverdon ER, Hougland JL. Biochemical assays for ghrelin acylation and inhibition of ghrelin O-acyltransferase. Methods Mol Biol. 2019;2009:227–241.
  • Yates MS, Tauchi M, Katsuoka F, et al. Pharmacodynamic characterization of chemopreventive triterpenoids as exceptionally potent inducers of nrf2-regulated genes. Mol Cancer Ther. 2007;6(1):154–162.
  • Yore MM, Liby KT, Honda T, et al. The synthetic triterpenoid 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole blocks nuclear factor-κb activation through direct inhibition of iκb kinase β. Mol Cancer Ther. 2006;5(12):3232–3239.
  • Honda T, Rounds BV, Gribble GW, et al. Design and synthesis of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, a novel and highly active inhibitor of nitric oxide production in mouse macrophages. Bioorg Med Chem Lett. 1998;8(19):2711–2714.
  • Wong MH, Bryan HK, Copple IM, et al. Design and synthesis of irreversible analogues of bardoxolone methyl for the identification of pharmacologically relevant targets and interaction sites. J Med Chem. 2016;59(6):2396–2409.
  • Liby KT, Sporn MB. Synthetic oleanane triterpenoids: multifunctional drugs with a broad range of applications for prevention and treatment of chronic disease. Pharmacol Rev. 2012;64(4):972–1003.
  • Jakob CG, Upadhyay AK, Donner PL, et al. Novel modes of inhibition of wild-type isocitrate dehydrogenase 1 (IDH1): direct covalent modification of His315. J Med Chem. 2018;61(15):6647–6657.
  • Nguyen HT, Nakajima K, Uto T, et al. Bioactive triterpenes from the root of salvia miltiorrhiza bunge. Phytother Res. 2017;31(9):1457–1460.
  • Galka CS, Hembre EJ, Honigschmidt NA, et al., inventors; Eli Lilly and Company, USA, assignee. Preparation of n-acylamino acid derivatives as ghrelin O-acyl transferase inhibitors. World patent WO 2016168225 A1. 2016 Oct 20.
  • Galka CS, Hembre EJ, Honigschmidt NA, et al., inventors; Eli Lilly and Company, USA, assignee. Preparation of 5-[2-[1-[n-acyl-l-alanyl]piperidin-4-yl]ethyl]-2-(trifluoromethyl)-6-methylpyrimidin-4-amine as ghrelin O-acyl transferase inhibitors. World patent WO 2016168222 A1. 2016 Oct 20.
  • Martinez-Grau MA, inventor; Eli Lilly and Company, USA, assignee. Ghrelin O-acyl transferase inhibitor. United States patent US 20150133474 A1. 2015 May 14.
  • Ruano G, Galka C, Hembre E, et al. Ghrelin O-acyl transferase (GOAT) inhibitors: optimization of the 6-chloro-2-methyl-5-[2-(4-piperidyl)ethyl]pyrimidin-4-amine scaffold. 252nd ACS National Meeting & Exposition; 2016 Aug 21–25; Philadelphia (PA): American Chemical Society; 2016.
  • Martinez-Grau M, Dominguez C, Galka C, et al. Discovery and evaluation of the first small molecules targeting GOAT inhibition in vivo. 252nd ACS National Meeting & Exposition; 2016 Aug 21–25; Philadelphia (PA): American Chemical Society; 2016.
  • Hembre E, Brier R, Chen Y, et al. Discovery of ly3073084, a novel non-peptide small molecule ghrelin-O-acyl transferase (GOAT) inhibitor. 252nd ACS National Meeting & Exposition; 2016 Aug 21–25; Philadelphia (PA): American Chemical Society; 2016.
  • GLWL Research Inc. A study of GLWL-01 in patients with Prader-Willi syndrome. ClinicalTrials.gov Identifier: NCT03274856: GLWL Research Inc.; 2017–2019.
  • Batterham R, Zakeri R. Investigating the role of ghrelin in regulating appetite and energy intake in patients following bariatric surgery (bari-insight). ClinicalTrials.gov Identifier: NCT03641417: University College, London; 2018–2019.
  • Leggio L. Ghrelin signaling via GOAT inhibition in alcohol use disorder. ClinicalTrials.gov Identifier: NCT03896516: National Institute on Alcohol Abuse and Alcoholism (NIAAA); 2019–2020.
  • Takakura N, Banno Y, Terao Y, et al., inventors; Takeda Pharmaceutical Company Limited, Japan, assignee. Preparation of benzothiophenyl- and benzofuranacetic acid derivatives as inhibitors of GOAT for treating obesity. World patent WO 2013125732 A1. 2013 Aug 29.
  • Bandyopadhyay A, Cheung M, Eidam HS, et al., inventors; GlaxoSmithKline Intellectual Property Development Limited, UK, assignee. Preparation of ghrelin O-acyltransferase inhibitors for treatment of metabolic disorders. India patent IN 201811004277A. 2019 Aug 9.
  • Bandyopadhyay A, Cheung M, Eidam HS, et al., inventors; GlaxoSmithΚline Intellectual Property Development Limited, UK, assignee. Preparation of ghrelin O-acyltransferase inhibitors for treatment of metabolic disorders. World patent WO 2019149959 A1. 2019 Aug 8.
  • Wang L, inventor; Peop. Rep. China, assignee. Ghrelin O-acyltransferase (GOAT) inhibitor and its applications in obesity and diabetes. China patent CN 108516972A. 2018 Sept 11.
  • Trieselmann T, Godbout C, Hoenke C, et al., inventors; Boehringer Ingelheim International GmbH, Germany, assignee. Preparation of benzyl-, (pyridin-3-yl)methyl- or (pyridin-4-yl)methyl-substituted oxadiazolopyridine derivatives as ghrelin O-acyl transferase (GOAT) inhibitors. World patent WO 2019149657 A1. 2019 Aug 8.
  • Trieselmann T, Godbout C, Vintonyak V, inventors; Boehringer Ingelheim International GmbH, Germany, assignee. Preparation of heterocyclyl-substituted oxadiazolopyridine derivatives for use as ghrelin O-acyl transferase inhibitors. World patent WO 2019149659 A1. 2019 Aug 8.
  • Trieselmann T, Godbout C, Hoenke C, et al., inventors; Boehringer Ingelheim International GmbH, Germany, assignee. Preparation of triazolopyrimidine derivatives as ghrelin O-acyl transferase (GOAT) inhibitors. World patent WO 2019149660 A1. 2019 Aug 8.
  • Godbout C, Trieselmann T, Vintonyak V, inventors; Boehringer Ingelheim International GmbH, Germany, assignee. Preparation of oxadiazolopyridine derivatives for use as ghrelin O-acyl transferase (GOAT) inhibitors. World patent WO 2018024653 A1. 2018 Feb 8.
  • Godbout C, Trieselmann T, Vintonyak V, inventors; Boehringer Ingelheim International GmbH, Germany, assignee. Preparation of heterocyclyl-substituted oxadiazolopyridine derivatives for use as ghrelin O-acyl transferase inhibitors. World patent WO 2019149658 A1. 2019 Aug 8.
  • Resh MD. Fatty acylation of proteins: the long and the short of it. Prog Lipid Res. 2016;63:120–131.
  • Ho SY, Keller TH. The use of porcupine inhibitors to target wnt-driven cancers. Bioorg Med Chem Lett. 2015;25(23):5472–5476.
  • Resh MD. Palmitoylation of proteins in cancer. Biochem Soc Trans. 2017;45(2):409–416.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.