468
Views
22
CrossRef citations to date
0
Altmetric
Review

Glycogen synthase kinase 3 (GSK-3) inhibitors: a patent update (2016–2019)

& ORCID Icon
Pages 863-872 | Received 08 Feb 2020, Accepted 17 Aug 2020, Published online: 14 Sep 2020

References

  • Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther. 2015;148:114–131.
  • Medina M, Wandosell F. Deconstructing GSK-3: the fine regulation of its activity. Int J Alzheimers Dis. 2011;2011:479249.
  • Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem. 1980;107(2):519–527.
  • Hur EM, Zhou FQ. GSK3 signalling in neural development. Nat Rev Neurosci. 2010;11(8):539–551.
  • Phukan S, Babu VS, Kannoji A, et al. GSK3beta: role in therapeutic landscape and development of modulators. BrJ Pharmacol. 2010;160(1):1–19.
  • Hoeflich KP, Luo J, Rubie EA, et al. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature. 2000;406(6791):86–90.
  • Meijer L, Flajolet M, Greengard P. Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci. 2004;25(9):471–480.
  • Maqbool M, Mobashir M, Hoda N. Pivotal role of glycogen synthase kinase-3: A therapeutic target for Alzheimer’s disease. Eur J Med Chem. 2016;107:63–81.
  • Giese KP. GSK-3: a key player in neurodegeneration and memory. IUBMB Life. 2009;61(5):516–521.
  • Henriksen EJ, Dokken BB. Role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Curr Drug Targets. 2006;7(11):1435–1441.
  • Lal H, Ahmad F, Woodgett J, et al. The GSK-3 family as therapeutic target for myocardial diseases. Circ Res. 2015;116(1):138–149.
  • Lin J, Song T, Li C, et al. GSK-3beta in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer. Biochim Biophys Acta Mol Cell Res. 2020;1867(5):118659–118665.
  • Taylor A, Rudd CE. Small molecule inhibition of glycogen synthase kinase-3 in cancer immunotherapy. Adv Exp Med Biol. 2019;1164:225–233.
  • Ko R, Lee SY. Glycogen synthase kinase 3beta in Toll-like receptor signaling. BMB Rep. 2016;49(6):305–310.
  • Hoffmeister L, Diekmann M, Brand K, et al. GSK3: A kinase balancing promotion and resolution of inflammation. Cells. 2020;9:820–830.
  • Duthie A, van Aalten L, MacDonald C, et al. Recruitment, retainment, and biomarkers of response, a pilot trial of lithium in humans with mild cognitive impairment. Front Mol Neurosci. 2019;12:163–179.
  • Lovestone S, Boada M, Dubois B, et al. A phase II trial of tideglusib in Alzheimer’s disease. J Alzheimers Dis. 2015;45(1):75–88.
  • Palomo V, Martinez A. Glycogen synthase kinase 3 (GSK-3) inhibitors: a patent update (2014–2015). Expert Opin Ther Pat. 2017;27(6):657–666.
  • Anagnostou E Tideglusib vs. placebo in the treatment of adolescents with autism spectrum disorders (TIDE). Available from: https://clinicaltrials.gov/ct2/show/NCT02586935
  • de Vries Schultink AH, Suleiman AA, Schellens JH, et al. Pharmacodynamic modeling of adverse effects of anti-cancer drug treatment. Eur J Clin Pharmacol. 2016;72(6):645–653.
  • Eldar-Finkelman H, Martinez A. GSK-3 inhibitors: preclinical and clinical focus on CNS. Front Mol Neurosci. 2011;4:32–50.
  • Pandey MK, DeGrado TR. Glycogen synthase kinase-3 (GSK-3)-targeted therapy and imaging. Theranostics. 2016;6(4):571–593.
  • Kuroki H, Anraku T, Kazama A, et al. 9-ING-41, a small molecule inhibitor of GSK-3beta, potentiates the effects of anticancer therapeutics in bladder cancer. Sci Rep. 2019;9(1):19977–19986.
  • Li L, Shao X, Cole EL, et al. Synthesis and initial in vivo studies with [(11)C]SB-216763: the first radiolabeled brain penetrative inhibitor of GSK-3. ACS Med Chem Lett. 2015;6(5):548–552.
  • Liang SH, Chen JM, Normandin MD, et al. Discovery of a highly selective glycogen synthase kinase-3 inhibitor (PF-04802367) that modulates tau phosphorylation in the brain: translation for PET neuroimaging. Angew Chem Int Ed Engl. 2016;55(33):9601–9605.
  • Bernard-Gauthier V, Mossine AV, Knight A, et al. Structural basis for achieving GSK-3beta inhibition with high potency, selectivity, and brain exposure for positron emission tomography imaging and drug discovery. J Med Chem. 2019;62(21):9600–9617.
  • Esfandiari F, Fathi A, Gourabi H, et al. Glycogen synthase kinase-3 inhibition promotes proliferation and neuronal differentiation of human-induced pluripotent stem cell-derived neural progenitors. Stem Cells Dev. 2012;21(17):3233–3243.
  • Welham MJ, Kingham E, Sanchez-Ripoll Y, et al. Controlling embryonic stem cell proliferation and pluripotency: the role of PI3K- and GSK-3-dependent signalling. Biochem Soc Trans. 2011;39(2):674–678.
  • Tucker TA, Idell S. Glycogen synthase kinase-3β inhibition with 9-ING-41 attenuates the progression of pulmonary fibrosis. Sci Rep. 2019;9:18925–18938.
  • Barratt SL, Creamer A, Hayton C, et al. Idiopathic pulmonary fibrosis (IPF): an overview. J Clin Med. 2018;7(8):201–222.
  • Fujimoto H, Kobayashi T, Azuma A. Idiopathic pulmonary fibrosis: treatment and prognosis. Clin. Med. Insights Circ Respir Pulm Med. 2015;9(Suppl 1):179–185.
  • Ugolkov AV, Bondarenko GI, Dubrovskyi O, et al. 9-ING-41, a small-molecule glycogen synthase kinase-3 inhibitor, is active in neuroblastoma. Anticancer Drugs. 2018;29(8):717–724.
  • Boren J, Shryock G, Fergis A, et al. Inhibition of glycogen synthase kinase 3beta blocks mesomesenchymal transition and attenuates streptococcus pneumonia-mediated pleural injury in mice. Am J Pathol. 2017;187(11):2461–2472.
  • University SN Application of glycyrrhizic acid to prepare drugs for promotign medullary sheath regeneration to restrain neurogenic inflammation; 2018. (CN109528738).
  • Jia YX, Li JR, Mao CY, et al. Glycyrrhizin improves p75NTR-associated sciatic nerve regeneration in a BALB/c mouse model. Exp Ther Med. 2014;7(5):1141–1146.
  • Kao TC, Shyu MH, Yen GC. Glycyrrhizic acid and 18beta-glycyrrhetinic acid inhibit inflammation via PI3K/Akt/GSK3beta signaling and glucocorticoid receptor activation. J Agric Food Chem. 2010;58(15):8623–8629.
  • Sato N, Meijer L, Skaltsounis L, et al. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med. 2004;10(1):55–63.
  • Neves VC, Babb R, Chandrasekaran D, et al. Promotion of natural tooth repair by small molecule GSK3 antagonists. Sci Rep. 2017;7:39654–39661.
  • Sharpe PT Dental treatment; 2018. (WO2018073599A1).
  • Reichman S, Terray A, Slembrouck A, et al. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc Natl Acad Sci U S A. 2014;111(23):8518–8523.
  • Reichman SGO, Sahel J-A Compositions and methods for efficent amplification of retinal progenitors cells; 2019. (WO2019170766A1).
  • Ni W, Zeng S, Li W, et al. Wnt activation followed by Notch inhibition promotes mitotic hair cell regeneration in the postnatal mouse cochlea. Oncotarget. 2016;7(41):66754–66768.
  • Roccio M, Hahnewald S, Perny M, et al. Cell cycle reactivation of cochlear progenitor cells in neonatal FUCCI mice by a GSK3 small molecule inhibitor. Sci Rep. 2015;5:17886–17897.
  • Loose CMW, Middletown H, Jirousek MR. Solubilized compositions for controlled proliferation of stem cells/generating inner ear hair cells using GSK3 inhibitors: III; 2016. (US10016507B2).
  • Loose CMW, Middletown H, Jirousek MR. Solubilized compositions for controlled proliferation of stem cells/generating inner ear hair cells using GSK3 inhibitors: II; 2017. (US2017/0252329A1).
  • Loose CMW, Middletown H, Jirousek MR Solubilized compositions for controlled proliferation of stem cells/generating inner ear hair cells using GSK3 inhibitors: IV; 2017. (US20170252450A1).
  • Loose CMW, Middletown H, Jirousek MR Solubilized compositions for controlled proliferation of stem cells/generating inner ear hair cells using GSK3 inhibitors:I; 2019. (US20190201398).
  • Toyoda T, Mae S, Tanaka H, et al. Cell aggregation optimizes the differentiation of human ESCs and iPSCs into pancreatic bud-like progenitor cells. Stem Cell Res. 2015;14(2):185–197.
  • Bazan NMF A modified cell culture medium and uses thereof; 2018. (WO2018187428).
  • Corporation K Method for producing insulin-producing cells; 2019. (WO/2019/151098).
  • Ochiya TKT Method for producing hepatic stem/precursor cells from mature hepatic cells using low-molecular-weight compound; 2017. (US2019/010464A1).
  • Fuchs C, Fustini N, Trazzi S, et al. Treatment with the GSK3-beta inhibitor Tideglusib improves hippocampal development and memory performance in juvenile, but not adult, Cdkl5 knockout mice. Eur J Neurosci. 2018;47(9):1054–1066.
  • Ciani E, Fuchs C Treatment of cdkl5 disorders with gsk-3 inhibitor Tideglusib; 2017. (WO-2017153834-A1).
  • Gramatica A Compositions and methods for reactivating latent immunodeficiency virus using a GSK-3 inhibitor; 2018. (WO/2018/226721).
  • Balasubramaniam M, Pandhare J, Dash C. Immune control of HIV. J Life Sci (Westlake Village). 2019;1(1):4–37.
  • Vanhamel J, Bruggemans A, Debyser Z. Establishment of latent HIV-1 reservoirs: what do we really know? J Virus Erad. 2019;5(1):3–9.
  • Ling TZY, Hanse Y, Zhangzhan X, et al. Application of GSK3 inhibitor in preparing a drug to treat niemann-pick disease type C; 2018. (WO/2018/064922).
  • Geberhiwot T, Moro A, Dardis A, et al. International niemann-pick disease R., consensus clinical management guidelines for niemann-pick disease type C. Orphanet J Rare Dis. 2018;13(1):50.
  • Wagner FF, Bishop JA, Gale JP, et al. Inhibitors of glycogen synthase kinase 3 with exquisite kinome-wide selectivity and their functional effects. ACS Chem Biol. 2016;11(7):1952–1963.
  • Xu L, Zheng J, Margittai M, et al., How does hyperphopsphorylation promote tau aggregation and modulate filament structure and stability? ACS Chem Neurosci. 7(5):565–575. 2016.
  • Song Y, Kim HD, Lee MK, et al. Maysin and its flavonoid derivative from centipedegrass attenuates amyloid plaques by inducting humoral immune response with th2 skewed cytokine response in the Tg (APPswe, PS1dE9) Alzheimer’s mouse model. PLoS One. 2017;12(1):e0169509.
  • Li QXL. Z. GSK-3B inhibitors and use thereof in methods of treatment; 2019. (WO/2019/108877).
  • Wagner F, Weiwer M, Campbell AJ, et al. Tricyclic compounds as clycogen synthase kinase (GSK3) inhibitors and uses thereof; 2018. (WO/2018/187630).
  • Lauretti E, Dincer O, Pratico D. Glycogen synthase kinase-3 signaling in Alzheimer’s disease. Biochim Biophys Acta Mol Cell Res. 2020;1867(5):118664–118671.
  • Alisi MA, Cazzola N, Dragone P, et al. 1H-indazole-3-carboxamide compunds as glycogen synthase kinase 3 beta inhibitors; 2017. (WO2013124158A1).
  • O´Flaherty LTJ, Seckl MJ, Pardo OE. Therapy; 2018. (WO/2018/083483).
  • Mathuram TL, Reece LM, Cherian KM. GSK-3 inhibitors: a double-edged sword? - an update on tideglusib. Drug Res (Stuttg). 2018;68(8):436–443.
  • Takahashi-Yanaga F. Activator or inhibitor? GSK-3 as a new drug target. Biochem Pharmacol. 2013;86(2):191–199.
  • Avrahami L, Licht-Murava A, Eisenstein M, et al. GSK-3 inhibition: achieving moderate efficacy with high selectivity. Biochim Biophys Acta. 2013;1834(7):1410–1414.
  • Palomo V, Perez DI, Perez C, et al. 5-imino-1,2,4-thiadiazoles: first small molecules as substrate competitive inhibitors of glycogen synthase kinase 3. J Med Chem. 2012;55(4):1645–1661.
  • Bidon-Chanal A, Fuertes A, Alonso D, et al. Evidence for a new binding mode to GSK-3: allosteric regulation by the marine compound palinurin. Eur J Med Chem. 2013;60:479–489.
  • Palomo V, Soteras I, Perez DI, et al. Exploring the binding sites of glycogen synthase kinase 3. Identification and characterization of allosteric modulation cavities. J Med Chem. 2011;54(24):8461–8470.
  • Chen YY, Chen G, Fan Z, et al. GSK3beta and endoplasmic reticulum stress mediate rotenone-induced death of SK-N-MC neuroblastoma cells. Biochem Pharmacol. 2008;76(1):128–138.
  • Mancinelli R, Carpino G, Petrungaro S, et al. Multifaceted roles of GSK-3 in cancer and autophagy-related diseases. Oxid Med Cell Longevity. 2017;2017:4629495–4629509.
  • Singh AP, Umbarkar P, Guo Y, et al. Inhibition of GSK-3 to induce cardiomyocyte proliferation: a recipe for in situ cardiac regeneration. Cardiovasc Res. 2019;115(1):20–30.
  • Sengupta S, Katz SC, Sengupta S, et al. Glycogen synthase kinase 3 inhibition lowers PD-1 expression, promotes long-term survival and memory generation in antigen-specific CAR-T cells. Cancer Lett. 2018;433:131–139.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.