395
Views
17
CrossRef citations to date
0
Altmetric
Review

Novel matrix metalloproteinase inhibitors: an updated patent review (2014 - 2020)

, &
Pages 509-523 | Received 31 Oct 2020, Accepted 22 Jan 2021, Published online: 22 Feb 2021

References

  • Fingleton B. Matrix metalloproteinases as valid clinical targets. Curr Pharm Design. 2007;13(3):333–346.
  • Dove A. MMP inhibitors: glimmers of hope amidst clinical failures. Nat Med. 2002;8(2):95.
  • Beckett RP, Whittaker M. Matrix metalloproteinase inhibitors 1998. Exp Opin Ther Patents. 1998;8(3):259–282.
  • Li N-G, Tang Y-P, Duan J-A, et al. Matrix metalloproteinase inhibitors: a patent review (2011 – 2013). Exp Opin Ther Patents. 2004;24(9):1039–1052.
  • Hu J, Van den Steen PE, Sang Q-XA, et al. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov. 2007;6:480–498.
  • Murphy G, Nagase H. Progress in matrix metalloproteinase research. Mol Aspects Med. 2008;29(5):290–308.
  • Khokha R, Murthy A, Weiss A. Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat Rev Immunol. 2013;13(9):649–665.
  • Fields GB. The rebirth of matrix metalloproteinase inhibitors: moving beyond the dogma. Cells. 2019;8(9):984.
  • Vandenbroucke RC, Libert C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov. 2014;13:904–927.
  • Rudek MA, Venitz J, Figg WD. Matrix metalloproteinase inhibitors: do they have a place in anticancer therapy? Pharmacotherapy. 2002;22(6):705–720.
  • Puerta DT, Cohen SM. A bioinorganic perspective on matrix metalloproteinase inhibition. Curr Top Med Chem. 2004;4(15):1551–1573.
  • Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017;147:1–73.
  • Fabre B, Ramos A, de Pascual-teresa B. Targeting matrix metalloproteinases: exploring the dynamics of the S1′ pocket in the design of selective, small molecule inhibitors. J. Med Chem. 2014;57(24):10205–10219.
  • Devy L, Dransfield DT. New strategies for the next generation of matrix-metalloproteinase inhibitors: selectively targeting membrane-anchored MMPs with therapeutic antibodies. Biochem Res Int. 2011;80(4):191670.
  • Nguyen TT, Ding D, Wolter WR, et al. Validation of matrix metalloproteinase-9 (MMP-9) as a novel target for treatment of diabetic foot ulcers in humans and discovery of a potent and selective small-molecule MMP-9 inhibitor that accelerates healing. J Med Chem. 2018;61(19):8825–8837.
  • Amar S, Fields GB. Potential clinical implications of recent matrix metalloproteinase inhibitor design strategies. Expert Rev Proteomics. 2015;12(5):445–447.
  • Boelen GJ, Boute L, d’Hoop J, et al. Matrix metalloproteinases and inhibitors in dentistry. Clin Oral Investig. 2019;23(7):2823–2835.
  • Fields GB. Mechanisms of action of novel drugs targeting angiogenesis-promoting matrix metalloproteinases. Front Immun. 2019;10:1278.
  • Lia N-G, Shib Z-H, Tang Y-P, et al. Selective matrix metallo proteinase inhibitors for cancer. Curr Med Chem. 2009;16(29):3805–3827.
  • Tauro M, McGuire J, Lynch CC. New approaches to selectively target cancer-associated matrix metalloproteinase activity. Cancer Metastasis Rev. 2014;33(4):1043–1057.
  • Martel-Pelletier J, Welsch DJ, Pelletier JP. Metalloproteases and inhibitors in arthritic diseases. Best Pract Res Clin Rheumatol. 2001;15(5):805–829.
  • Chopra S, Overall CM, Dufour A. Matrix metalloproteinases in the CNS: interferons get nervous. Cell Mol Life Sci. 2019;76(16):3083–3095.
  • Zheng H, Takahashi H, Murai Y, et al. Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma. Anticancer Res. 2006;26(5A):3579–3583.
  • Rangasamy L, Di Geronimo B, Ortín I, et al. Molecular imaging probes based on matrix metalloproteinase inhibitors (MMPIs). Molecules. 2019;24(16):2982.
  • Ala-aho R, Kähäri V-M. Collagenases in cancer. Biochimie. 2005;87(3–4):273–286.
  • Amar S, Smith L, Fields GB. Matrix metalloproteinase collagenolysis in health and disease. Biochim Biophys Acta Mol Cell Res. 2017;1864(11):1940–1951.
  • Knäuper V, López-Otín C, Smith B, et al. Biochemical characterization of human collagenase-3. J Biol Chem. 1996;271(3):1544–1550.
  • Deng SJ, Bickett DM, Mitchell JL, et al. Substrate specificity of human collagenase 3 assessed using a phage-displayed peptide library. J Biol Chem. 2000;275(40):31422–31427.
  • Inada M, Wang Y, Byrne MH, et al. Critical roles for collagenase-3 (MMP13) in development of growth plate cartilage and in endochondral ossification. Proc Natl Acad Sci USA. 2004;101(49):17192–17197. .
  • Alipour H, Raz A, Zakeri S, et al. Therapeutic applications of collagenase (metalloproteases): a review, asian pac j trop biomed. 2016;6(11):975–981.
  • Morrison C, Overall C. Microarray and proteomic analysis of breast cancer cell and osteoblast co-cultures: role of osteoblast matrix metalloproteinase (MMP)-13 in bone metastasis. J Biol Chem. 2011;286:34271–34285.
  • Nara H, Kori M. Discovery of novel, highly potent and selective matrix metalloproteinase (MMP-13) inhibitors with a 1,2,4-triazol-3-yl moiety as a zinc binding group using a structure-based design approach. J Med Chem. 2017;60:608–626.
  • Lia N-G, Shib Z-H, Tang Y-P, et al. New selective inhibitors of MMP-13 for inflammatory diseases: a patent evaluation (W02012151158). Expert Opin Ther Pat. 2013;23(5):669–675.
  • Nara H, Sato K, Kaieda A, et al. Design, synthesis, and biological activity of novel, potent, and highly selective fused pyrimidine-2-carboxamide-4-one-based matrix metalloproteinase (MMP)-13 zinc-binding inhibitors. Bioorg Med Chem. 2016;24(23):6149–6165.
  • Florida Atlantic University Board of Trustees. Selective matrix metalloproteinase-13 inhibitors. WO2018226837 (2018)
  • Lauer-Fields JL, Fields GB. Triple-helical peptide analysis of collagenolytic protease activity. Biol Chem. 2002;383(7–8):1095–1105.
  • Lauer-Fields JL, Broder T, Sritharan T, et al. Kinetic analysis of matrix metalloproteinase activity using fluorogenic triple-helical substrates. Biochemistry. 2001;40(19):5795–5803.
  • Takaishi H, Kimura T, Dalal S, et al. Joint diseases and matrix metalloproteinases: a role for MMP-13. Curr Pharm Biotechnol. 2008;9(1):47–54.
  • Neuhold LA, Killar L, Zhao WG, et al. Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J Clin Invest. 2001;107(1):35–44.
  • Roth J, Minond D, Darout E, et al. Identification of novel, exosite-binding matrix metalloproteinase-13 inhibitor scaffolds. Bioorg Med Chem Lett. 2011;21(23):7180–7184.
  • Spicer TP, Jiang J, Taylor AB, et al. Characterization of selective exosite-binding inhibitors of matrix metalloproteinase 13 that prevent articular cartilage degradation in vitro. J Med Chem. 2014;57(22):9598–9611.
  • Pharmaceuticals A, Inc. matrix metalloproteinase inhibitors and methods for the treatment of pain and other diseases. WO2014062204 (2014)
  • Baragi VM, Becher G, Bendele AM, et al. A new class of potent matrix metalloproteinase 13 inhibitors for potential treatment of osteoarthritis: evidence of histologic and clinical efficacy without musculoskeletal toxicity in rat models. Arthritis Rheumatol. 2009;60(7):2008–2018.
  • Bauvois B. New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: outside-in signaling and relationship to tumor progression. BBA Rev Cancer. 2012;1825(1):29–36.
  • Vihinen P, Ala-aho R, Kahari VM. Matrix metalloproteinases as therapeutic targets in cancer. Curr Cancer Drug Targets. 2005;5(3):203–220.
  • Fingleton B. Matrix metalloproteinase inhibitors for cancer therapy: the current situation and future prospects. Expert Opin Ther Tar. 2003;7(3):385–397.
  • Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3(6):401–410.
  • Mu D, Cambier S, Fjellbirkeland L, et al. The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J Cell Biol. 2002;157(3):493–507.
  • Bergers G, Brekken R, Mcmahon G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2(10):737–744.
  • Chetty C, Lakka SS, Bhoopathi P, et al. Alters VEGF expression via αvβ3 integrin-mediated pi3k/akt signaling in a549 lung cancer cells. Int J Cancer. 2010;127(5):1081–1095.
  • Dufour A, Zucker S, Sampson NS, et al. Role of matrix metalloproteinase-9 dimers in cell migration. J Biol Chem. 2010;285(46):35944–35956.
  • Higashi S, Miyazaki K. Identification of amino acid residues of the matrix metalloproteinase-2 essential for its selective inhibition by beta-amyloid precursor protein-derived inhibitor. Biol Chem. 2008;283(15):10068–10078.
  • Roomi MW, Monterrey JC, Kalinovsky T, et al. Patterns of MMP-2 and MMP-9 expression in human cancer cell lines. Oncol Rep. 2009;21(5):1323–1333.
  • Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25:9–34.
  • Xun L. Gelatinase inhibitors: a patent review (2011-2017). Expert Opin Ther Patents. 2018;28(1):31–46.
  • Adhikari N, Amin SA, Jha T. Collagenases and gelatinases and their inhibitors as anticancer agents. In: Gupta SP, editor. Cancer-leading proteases: structures, functions, and inhibition. New York, NY, USA: Elsevier; 2020. p. 265–294.
  • Beutel B, Song J, Konken CP, et al. New in vivo compatible matrix metalloproteinase (MMP)-2 and MMP-9 Inhibitors. Bioconjug Chem. 2018;29(11):3715–3725.
  • Lenci E, Contini A, Trabocchi A. Discovery of a D-pro-lys peptidomimetic inhibitor of MMP9: addressing the gelatinase selectivity beyond S1′ subsite. Bioorg Med Chem Lett. 2020;30(20):127467.
  • Lenci E, Innocenti R, Di Francescantonio T, et al. Identification of highly potent and selective MMP2 inhibitors addressing the S1′ subsite with D-proline-based compounds. Bioorg Med Chem. 2019;27(9):1891–1902.
  • Mangiatordi GF, Guzzo T, Rossano EC, et al. Design, synthesis, and biological evaluation of tetrahydro-β-carboline derivatives as selective sub-nanomolar gelatinase inhibitors. ChemMedChem. 2018;13(13):1343–1352.
  • Rempe RG, Hartz AM, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: versatile breakers and makers. J Cereb Blood Flow Metab. 2016;36(9):1481–1507.
  • Brkic M, Balusu S, Libert C, et al. Friends or foes: matrix metalloproteinases and their multifaceted roles. Mediators Inflamm. 2015;2015:620581
  • The Research Foundation for the State University of New York. matrix metalloproteinase-9 hemopexin domain inhibitors and methods of treatment using same. WO2018175670; 2018.
  • Alford VM, Kamath A, Ren X, et al. Targeting the hemopexin-like domain of latent matrix metalloproteinase-9 (prommp-9) with a small molecule inhibitor prevents the formation of focal adhesion junctions. ACS Chem Biol. 2017;12(11):2788–2803.
  • Yong VW. Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci. 2005;6(12):931–944.
  • Nagy V. Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J Neurosci. 2006;26(7):1923–1934.
  • Konopka A, Grajkowska W, Ziemiańska K, et al. Matrix metalloproteinase-9 (MMP-9) in human intractable epilepsy caused by focal cortical dysplasia. Epilepsy Res. 2013;1(1–2):45–58.
  • Yamamori H, Hashimoto R, Ishima T, et al. Plasma levels of mature brain-derived neurotrophic factor (BDNF) and matrix metalloproteinase-9 (MMP-9) in treatment-resistant schizophrenia treated with clozapine. Neurosci Lett. 2013;556:37–41.
  • Fragkouli A, Papatheodoropoulos C, Georgopoulos S, et al. Enhanced neuronal plasticity and elevated endogenous sAPPα levels in mice over‐expressing MMP9. J Neurochem. 2012;121(2):239–251.
  • Zipfel P, Rochais C, Baranger K, et al. Matrix metalloproteinases as new targets in alzheimer’s disease: opportunities and challenges. J Med Chem. 2020;63(19):10705–10725.
  • Bienkowski P, Samochowiec J, Pelka-Wysiecka J, et al. Functional polymorphism of matrix metalloproteinase-9 (MMP9). Pharmacol Rep. 2015;67(3):442–445.
  • Iproteos SL Gelatinase inhibitors and use thereof. WO2017085034 (2017)
  • Bertran A, Khomiak D, Konopka A, et al. Design and synthesis of selective and blood-brain barrier-permeable hydroxamate-based gelatinase inhibitors. Bioorg Chem. 2020;94:103365.
  • Bartolome RA, Ferreiro S, Miquilena-Colina ME, et al. The chemokine receptor cxcr4 and the metalloproteinase mt1-MMP are mutually required during melanoma metastasis to lungs. Am J Pathol. 2009;174(2):602–612.
  • Lakhan SE, Kirchgessner A, Tepper D, et al. Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Front Neurol. 2013;4:32.
  • University of Notre Dame Du Lac. Selective matrix metalloproteinase inhibitors. WO2015127302 (2015)
  • Jones JI, Nguyen TT, Peng Z, et al. Targeting MMP-9 in diabetic foot ulcers. Pharmaceuticals. 2019;12(2):79.
  • Mallinckrodt LLC Matrix metalloproteinase (MMP) targeted agents for imaging and therapy. WO2014151988 (2014)
  • Freskos JN, Asmelash B, Gaston KR, et al. Design and synthesis of MMP inhibitors with appended fluorescent tags for imaging and visualization of matrix metalloproteinase enzymes. Bioorg Med Chem Lett. 2013;23(20):5566–5570.
  • Remacle AG, Shiryaev SA, Golubkov VS, et al. Non-destructive and selective imaging of the functionally active, pro-invasive membrane type-1 matrix metalloproteinase (MT1-MMP) enzyme in cancer cells. J Biol Chem. 2013;288(28):20568–20580.
  • Loyola University of Chicago. Carborane hydroxamic acid matrix metalloproteinase inhibitors and agents for boron neutron capture therapy. WO2020006384 (2020)
  • Lutz MR, Flieger S, Colorina A, et al. Carborane‐containing matrix metalloprotease (MMP) ligands as candidates for boron neutron‐capture therapy (BNCT). ChemMedChem. 2020;15(20):1897–1908.
  • Valliant J, KJ G, AS K, et al. The medicinal chemistry of carboranes. Coord Chem. 2002;232(1–2):173–230.
  • Trivillin VA, Bruno LJ, Gatti DA, et al. Boron neutron capture synovectomy (BNCS) as a potential therapy for rheumatoid arthritis: radiobiological studies at RA-1 nuclear reactor in a model of antigen-induced arthritis in rabbits. Radiat Environ Biophys. 2016;55(4):467–475.
  • Yip C, Foidart P, Noël A. Sounni NE MT4-MMP: the GPI-anchored membrane-type matrix metalloprotease with multiple functions in diseases. Int J Mol Sci. 2019;20(2):354.
  • WR E, XS P, JM F, et al. Membrane type 4 matrix metalloproteinase (MMP17) has tumor necrosis factor-alpha convertase activity but does not activate pro-MMP2. J Biol Chem. 2000;275(19):14046–14055.
  • Itoh Y, Kajita M, Kinoh H, et al. Membrane type 4 matrix metalloproteinase (MT4-MMP, MMP-17) is a glycosylphosphatidylinositol-anchored proteinase. J Biol Chem. 1999;274(48):34260–34266.
  • Centro nacional de investigaciones cardiovascular carlos iii. inhibitors of membrane-type 4 matrix metalloproteinase and its use in the treatment of diseases benefiting from an increase in the activity of patrolling monocytes. WO 2019086683 (2019)
  • Lagente V, Le Quement C, Boichot E. Macrophage metalloelastase (MMP-12) as a target for inflammatory respiratory diseases. Exp Opin Ther Targets. 2009;13(3):287–295.
  • Demedts IK, Morel-montero A, Lebecque S, et al. Elevated MMP-12 protein levels in induced sputum from patients with COPD. Thorax. 2006;61(3):196–201.
  • He MK, Le Y, Zhang YF, et al. Matrix metalloproteinase 12 expression is associated with tumor FOXP3+ regulatory T cell infiltration and poor prognosis in hepatocellular carcinoma. Oncol Lett. 2018;16(1):475–482.
  • Churg A, Wang R, Wang X, et al. Effect of an MMP-9/MMP-12 inhibitor on smoke-induced emphysema and airway remodelling in guinea pigs. Thorax. 2007;62(8):706–711.
  • Selective NP. MMP-12 inhibitors: WO-2008057254. Exp Opin Ther Pat. 2009;19(7):1029–1034.
  • Foresee pharmaceuticals USA Inc. matrix metalloproteinase (MMP) Inhibitors and methods of use thereof. WO2019222157 (2019)
  • DSM IP assets b.v. phosphinic peptide derivatives for use as MMP-12 inhibitors. WO2017093093 (2017)
  • Commissariat a l’Energie atomique et aux energie alternatives and the university of british columbia. Inhibitors of MMP-12 as antiviral Agents. EP2907512 (2014)
  • Devel L, Rogakos V, David A, et al. Development of selective inhibitors and substrate of matrix metalloproteinase-12. J Biol Chem. 2006;281(16):11152–11160.
  • Centre national de la recherche scientifique – CNRS and the university de reims champagne-ardenne. Metalloproteinase inhibitors, methods for producing same, and therapeutic uses thereof. WO2015028766 (2015)
  • Bayer Pharma Aktiengesellschaft. 2,5-disubstituted cyclopentane carboxylic acids for the treatment of respiratory tract diseases. WO2015150350 (2015)
  • Bayer Pharma Aktiengesellschaft. Substituted benzotriazinone butane acids and use thereof. WO2015150364 (2015)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.