603
Views
10
CrossRef citations to date
0
Altmetric
Review

Hypoxia-activated prodrug derivatives of anti-cancer drugs: a patent review 2006 – 2021

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-12 | Received 22 Mar 2021, Accepted 08 Jul 2021, Published online: 28 Jul 2021

References

  • [cited June 2021]. https://www.who.int/news-room/fact-sheets/detail/cancer
  • Dagogo-Jack I, Shaw AT. Tumor heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15(2):81–94.
  • Gillies RJ. Cancer heterogeneity and metastasis: life at the edge. Clin Exp Metastasis. 2021. In press. DOI:https://doi.org/10.1007/s10585-021-10101-2
  • McKeown SR. Defining normoxia, physoxia and hypoxia in tumours – implications for treatment response. Br J Radiol. 2014;87(1035):20130676.
  • Vaupel P. Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. Oncologist. 2008;13 Suppl 3(S3):21–26.
  • Jing X, Yang F, Shao C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019 ;18(1):157.
  • Harris AL. Hypoxia: a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2(1):38–47.
  • You L, Wu W, Wang X, et al. The role of hypoxia-inducible factor 1 in tumor immune evasion. Med Res Rev. 2021;41(3):1622–1643.
  • Pietrobon V, Marincola FM. Hypoxia and the phenomenon of immune exclusion. J Transl Med. 2021;19(1):9.
  • Abou Khouzam R, Brodaczewska K, Filipiak A, et al. Tumor hypoxia regulates immune escape/invasion: influence on angiogenesis and potential impact of hypoxic biomarkers on cancer therapies. Front Immunol. 2021;11:613114.
  • Luo W, Wang Y. Hypoxia mediates tumor malignancy and therapy resistance in D. M. Gilkes (ed.), Hypoxia and cancer metastasis. Adv Exp Med Biol. 2019;1136:1–18.
  • Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004;4(6):437–447.
  • Jackson RK, Liew LP, Hay MP. Overcoming radioresistance: small molecule radiosensitisers and hypoxia-activated prodrugs. Clin Oncol (R Coll Radiol). 2019;31(5):290–302.
  • Wigerup C, Påhlman S, Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther. 2016;164:152–169.
  • Dubois LJ, Niemans R, van Kuijk SJ, et al. New ways to image and target tumour hypoxia and its molecular responses. Radiother Oncol. 2015;116(3):352–357.
  • Supuran CT. Experimental carbonic anhydrase inhibitors for the treatment of hypoxic tumors. J Exp Pharmacol. 2020;12:603–617.
  • Sharma A, Arambula JF, Koo S, et al. Hypoxia-targeted drug delivery. Chem Soc Rev. 2019;48(3):771–813.
  • Su MX, Zhang LL, Huang ZJ, et al. Investigational hypoxia-activated prodrugs: making sense of future development. Curr Drug Targets. 2019;20(6):668–678.
  • Baran N, Konopleva KM. Molecular pathways: hypoxia-activated prodrugs in cancer therapy. Clin Cancer Res. 2017;23(10):2382–2390.
  • Phillips RM. Targeting the hypoxic fraction of tumours using hypoxia-activated prodrugs. Cancer Chemother Pharmacol. 2016;77(3):441–457.
  • Lin AJ, Cosby LA, Shansky CW, et al. Potential bioreductive alkylating agents. 1. Benzoquinone derivatives. J Med Chem. 1972;15(12):1247–1252.
  • Brown JM, Giaccia AJ. Tumour hypoxia: the picture has changed in the 1990s. Int J Radiat Biol. 1994;65(1):95–102.
  • Workman P, Stratford IJ. The experimental development of bioreductive drugs and their role in cancer therapy. Cancer Metastasis Rev. 1993;12(2):73–82.
  • Chen Y, Hu L. Design of anticancer prodrugs for reductive activation. Med Res Rev. 2009;29(1):29–64.
  • Nepali K, Lee H-Y, Liou J-P. Nitro-group-containing drugs. J Med Chem. 2019;62(6):2851–2893.
  • Liang D, Miller GH, Tranmer GK. Hypoxia activated prodrugs: factors influencing design and development. Curr Med Chem. 2015;22(37):4313–4325.
  • Foehrenbacher A, Secomb TW, Wilson WR, et al. Design of optimized hypoxia-activated prodrugs using pharmacokinetic/pharmacodynamic modeling. Front Oncol. 2013;3:314.
  • Zhou M, Xie Y, Xu S, et al. Hypoxia-activated nanomedicines for effective cancer therapy. Eur J Med Chem. 2020;195:112274.
  • Dickson BD, Wong WW, Wilson WR, et al. Studies towards hypoxia-activated prodrugs of PARP inhibitors. Molecules. 2019;24(8):1559.
  • Liew LP, Singleton DC, Wong WW, et al. Hypoxia-activated prodrugs of PERK inhibitors. Chem Asian J. 2019;14(8):1238–1248.
  • Bielec B, Schueffl H, Terenzi A, et al. Development and biological investigations of hypoxia-sensitive prodrugs of the tyrosine kinase inhibitor crizotinib. Bioorg Chem. 2020;99:103778.
  • De Simone G, Vitale RM, di Fiore A, et al. Carbonic anhydrase inhibitors: hypoxia-activatable sulfonamides incorporating disulfide bonds that target the tumor-associated isoform IX†. J Med Chem. 2006;49(18):5544–5551.
  • Nocentini A, Trallori E, Singh S, et al. 4-Hydroxy-3-nitro-5-ureido-benzenesulfonamides selectively target the tumor-associated carbonic anhydrase isoforms IX and XII showing hypoxia-enhanced antiproliferative profiles. J Med Chem. 2018;61(23):10860–10874.
  • Aspatwar A, Parvathaneni NK, Barker H, et al. Design, synthesis, in vitro inhibition and toxicological evaluation of human carbonic anhydrases I, II and IX inhibitors in 5-nitroimidazole series. J Enzyme Inhib Med Chem. 2020;35(1):109–117.
  • van Kuijk SJA, Parvathaneni NK, Niemans R, et al. New approach of delivering cytotoxic drugs towards CAIX expressing cells: a concept of dual-target drugs. Eur J Med. Chem. 2017;127:691–702.
  • Aspatwar A, Becker HM, Parvathaneni NK, et al. Nitroimidazole-based inhibitors DTP338 and DTP348 are safe for zebrafish embryos and efficiently inhibit the activity of human CA IX in Xenopus oocytes. J Enzyme Inhib Med Chem. 2018;33(1):1064–1073.
  • Al-Hilal TA, Hossain MA, Alobaida A, et al. Design, synthesis and biological evaluations of a long-acting, hypoxia-activated prodrug of fasudil, a ROCK inhibitor, to reduce its systemic side-effects. J Control Release. 2021;334:237–247.
  • Skwarska A, Calder EDD, Sneddon D, et al. Development and pre-clinical testing of a novel hypoxia-activated KDAC inhibitor. Cell Chem Biol. 2021. in press. DOI:https://doi.org/10.1016/j.chembiol.2021.04.004.
  • Cazares-Körner C, Pires IM, Swallow ID, et al. CH-01 is a hypoxia-activated prodrug that sensitizes cells to hypoxia/reoxygenation through inhibition of Chk1 and Aurora A. ACS Chem Biol. 2013;8(7):1451–1459.
  • Denny WA. Hypoxia-activated anticancer drugs. Expert Opin Ther Pat. 2005;15(6):635–646.
  • Davis PD, Naylor MA, Thomson P. Bioreductively-activated prodrugs. 2006; WO2006032921A1.
  • Matteucci M, Duan JX, Jiao H, et al. Phosphoramidate alkylator prodrugs. 2007;WO2007002931A2.
  • Ammons S, Duan JX, Jung D, et al. Phosphoramidate alkylator prodrugs for the treatment of cancer. 2008;WO2008083101A1.
  • Duan JX, Jiao H, Kaizerman J, et al. Potent and highly selective hypoxia-activated achiral phosphoramidate mustards as anticancer drugs. J Med Chem. 2008;51(8):2412–2420.
  • Peeters SG, Zegers CM, Biemans R, et al. TH-302 in combination with radiotherapy enhances the therapeutic outcome and is associated with pretreatment [18F]HX4 hypoxia PET imaging. Clin Cancer Res. 2015;21(13):2984–2992.
  • Spiegelberg L, Van Hoof SJ, Biemans R, et al. Evofosfamide sensitizes esophageal carcinomas to radiation without increasing normal tissue toxicity. Radiother Oncol. 2019;141:247–255.
  • Nytko KJ, Grgic I, Bender S, et al. The hypoxia-activated prodrug evofosfamide in combination with multiple regimens of radiotherapy. Oncotarget. 2017;8(14):23702–23712.
  • Meng F, Evans JW, Bhupathi D, et al. Molecular and cellular pharmacology of the hypoxia-activated prodrug TH-302. Mol Cancer Ther. 2012;11(3):740–751.
  • Hong CR, Dickson BD, Jaiswal JK, et al. Cellular pharmacology of evofosfamide (TH-302): a critical re-evaluation of its bystander effects. Biochem Pharmacol. 2018;156:265–280.
  • Hong CR, Wilson WR, Hicks KO. An intratumor pharmacokinetic/pharmacodynamic model for the hypoxia-activated prodrug evofosfamide (TH-302): monotherapy activity is not dependent on a bystander effect. Neoplasia. 2019;21(2):159–171.
  • Li Y, Zhao L, Li XF. The hypoxia-activated prodrug TH-302: exploiting hypoxia in cancer therapy. Front Pharmacol. 2021;12:636892.
  • Tap WD, Papai Z, Van Tine BA, et al. Doxorubicin plus evofosfamide versus doxorubicin alone in locally advanced, unresectable or metastatic soft-tissue sarcoma (TH CR-406/SARC021): an international, multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2017;18(8):1089–1103.
  • Van Cutsem E, Lenz HJ, Furuse J, et al. MAESTRO: a randomized, double-blind phase III study of evofosfamide (Evo) in combination with gemcitabine (Gem) in previously untreated patients (pts) with metastatic or locally advanced unresectable pancreatic ductal adenocarcinoma (PDAC). J Clin Oncol. 2016;34(15_suppl):4007.
  • Smaill JB, Patterson AV, Denny WA, et al. Prodrug forms of kinase inhibitors and their use in therapy. 2010;WO2010104406A1.
  • Smaill JB, Patterson AV, Lu GL, et al. Kinase inhibitors, prodrug forms thereof and their use in therapy. 2011;WO2011028135A1.
  • Liu SV, Villaruz LC, Lee VHF, et al. LBA61 First analysis of RAIN-701: study of tarloxotinib in patients with non-small cell lung cancer (NSCLC) EGFR Exon 20 insertion, HER2-activating mutations & other solid tumours with NRG1/ERBB gene fusions. Ann Oncol. 2020;31(Supp 4):S1189.
  • Nishino M, Suda K, Koga T, et al. Activity of tarloxotinib-E in cells with EGFR exon-20 insertion mutations and mechanisms of acquired resistance. Thorac Cancer. 2021;12(10):1511–1516.
  • Estrada-Bernal A, Le AT, Doak AE, et al. Tarloxotinib is a hypoxia-activated Pan-HER kinase inhibitor active against a broad range of HER-family oncogenes. Clin Cancer Res. 2021;27(5):1463–1475.
  • Xueying S, Zongxia F, Yanfang G, et al. An m-nitroarylmethoxy camptothecin anoxic activation prodrug for antitumor drugs. 2012;CN102746316(A).
  • Yinjie H, Wanhu L, Fang Q, et al. Para-nitro aromatic methyl crizotinib hypoxia-activated prodrug for anticancer drugs. 2014;CN103570689A.
  • Fei L, Dongyin C, Lei Y, et al. Hypoxia-activated prodrug of lenvatinib and application of hypoxia activated prodrug. 2017;CN107513057A.
  • Wei L, Chen J, Shuai W, et al. Hypoxic activation prodrug based on 2,2-dimethyl-3-(2-nitroimidazolyl) propionic acid. 2017;CN107417672A.
  • Qiumeng Z, Chen J, Yu J, et al. Synthesis of new branched 2-nitroimidazole as a hypoxia sensitive linker for ligand-targeted drugs of paclitaxel. ACS Omega. 2018;3(8):8813–8818.
  • Fei L, Xinji Z, Yi Z. N-formate hypoxic activation prodrug of gemcitabine phosphate and application of prodrug. 2018;CN107698639A.
  • Fei L. Gemcitabine protide and application thereof. 2018; WO2018028494A1.
  • Slusarczyk M, Lopez MH, Balzarini J, et al. Application of ProTide technology to gemcitabine: a successful approach to overcome the key cancer resistance mechanisms leads to a new agent (NUC-1031) in clinical development. J Med Chem. 2014;57(4):1531–1542.
  • Shiying L, Xueyan J, Hong C, et al. Hypoxia activation doxorubicin prodrug and preparation method thereof. 2018;CN108395460A.
  • Guohui S, Weinan X, Xiaodong S, et al. Inhibitor of low-oxygen targeted tumor cell DNA repair enzyme methylguanine methyl transferase (MGMT), and preparation method and application of inhibitor. 2019;CN109721603A.
  • Guohui S, Yaxin H, Zhaoqi H, et al. Nitrobenzene substituted O6-3-aminomethylbenzylguanine, and preparation method and application thereof. 2020;CN111925371A.
  • Huang X, Sun Z, Zhuang J, et al. Pyridinium-modified prodrug small molecule containing different nitroaromatic heterocycles. 2019;CN110437281A.
  • Minchinton A, Kyle A, Evans J, et al. DNA-PK inhibiting compounds. 2021;WO2021050059A1.
  • Lindner LH. Hypoxia-activated prodrug: an appealing preclinical concept yet lost in clinical translation. Lancet Oncol. 2017;18(8):991–993.
  • Spiegelberg L, Houben R, Niemans R, et al. Hypoxia-activated prodrugs and (lack of) clinical progress: the need for hypoxia-based biomarker patient selection in phase III clinical trials. Clin Transl Radiat Oncol. 2019;15:62–69.
  • Yang L, West CML. Hypoxia gene expression signatures as predictive biomarkers for personalising radiotherapy. Br J Radiol. 2019;92:20180036.
  • Sanduleanu S, Jochems A, Upadhaya T, et al. Non-invasive imaging prediction of tumor hypoxia: a novel developed and externally validated CT and FDG-PET-based radiomic signatures. Radiother Oncol. 2020;153:97–105.
  • Salem A, Asselin MC, Reymen B, et al. Targeting hypoxia to improve non-small cell lung cancer outcome. J Natl Cancer Inst. 2018;110(1):14–30.
  • Wang B, Zhao Q, Zhang Y, et al. Targeting hypoxia in the tumor microenvironment: a potential strategy to improve cancer immunotherapy. J Exp Clin Cancer Res. 2021;40(1):24.
  • Fu Z, Mowday AM, Smaill JB, et al. Tumour hypoxia-mediated immunosuppression: mechanisms and therapeutic approaches to improve cancer immunotherapy. Cells. 2021 ;10(5):1006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.