214
Views
1
CrossRef citations to date
0
Altmetric
Review

Antimalarial drugs: what’s new in the patents?

ORCID Icon, ORCID Icon & ORCID Icon
Pages 151-168 | Received 10 Feb 2023, Accepted 13 Apr 2023, Published online: 20 Apr 2023

References

  • WHO. World malaria report 2022. World Health Organization; 2022.
  • Taylor AR, Watson JA, Chu CS, et al. Resolving the cause of recurrent Plasmodium vivax malaria probabilistically. Nat Commun. 2019;10(1):5595. DOI:10.1038/s41467-019-13412-x
  • Lopes EA, Santos MMM, Mori M. Pharmacological treatment of malaria. In: Vermelho A, and Supuran C, editors. Antiprotozoal drug development and delivery. Cham: Springer International Publishing; 2022. p. 219–240.
  • Aly AS, Vaughan AM, Kappe SH. Malaria parasite development in the mosquito and infection of the mammalian host. Annu Rev Microbiol. 2009;63:195–221. PubMed PMID: 19575563; PubMed Central PMCID: PMCPMC2841446. DOI:10.1146/annurev.micro.091208.073403.
  • Smith ML, Styczynski MP. Systems biology-based investigation of host-plasmodium interactions. Trends Parasitol. 2018 Jul;34(7):617–632. PubMed PMID: 29779985; PubMed Central PMCID: PMCPMC7028355. DOI:10.1016/j.pt.2018.04.003.
  • Lifecycle of malaria parasite: mMV medicines for malaria venture; 2023 [cited 2023 30 jan 2023]. Available from: https://www.mmv.org/malaria-medicines/lifecycle-malaria-parasite
  • MNM UK. Best of British: how british-backed science can accelerate the end of malaria. UK MNM, editor. 2021. Malaria No More UK.
  • Lu KY, Derbyshire ER. Tafenoquine: a step toward malaria elimination. Biochemistry. 2020 Mar 3;59(8):911–920. PubMed PMID: 32073254; PubMed Central PMCID: PMCPMC8034837. eng. DOI:10.1021/acs.biochem.9b01105.
  • Ippolito MM, Moser KA, Kabuya JB, et al. Antimalarial drug resistance and implications for the WHO global technical strategy. Curr Epidemiol Rep. 2021;8(2):46–62.
  • Rasmussen C, Alonso P, Ringwald P. Current and emerging strategies to combat antimalarial resistance. Exp Rev Anti-Infective Ther. 2022;20(3):353–372.
  • Hanboonkunupakarn B, Tarning J, Pukrittayakamee S, et al. Artemisinin resistance and malaria elimination: where are we now? Front Pharmacol. 2022;13: English.
  • Qiu D, Pei JV, Rosling JEO, et al. A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin. Nat Commun. 2022;13(1):5746.
  • Yipsirimetee A, Chiewpoo P, Tripura R, et al. Assessment in vitro of the antimalarial and transmission-blocking activities of cipargamin and ganaplacide in artemisinin-resistant Plasmodium falciparum. Antimicrob Agents Chemother. 2022 Mar 15;66(3):e0148121. DOI:10.1128/aac.01481-21. PubMed PMID: 34978886; PubMed Central PMCID: PMCPMC8923224. eng.
  • Laurens MB. RTS,S/AS01 vaccine (Mosquirix™): an overview. Hum Vaccin Immunother. 2020 Mar 3;16(3):480–489. PubMed PMID: 31545128; PubMed Central PMCID: PMCPMC7227679. eng. DOI:10.1080/21645515.2019.1669415.
  • Datoo MS, Natama HM, Somé A, et al. Efficacy and immunogenicity of R21/Matrix-M vaccine against clinical malaria after 2 years’ follow-up in children in Burkina faso: a phase 1/2b randomised controlled trial. Lancet Infect Dis. 2022;22(12):1728–1736.
  • Trials C Safety, immunogenicity and efficacy of R21 matrix-M in 5-17 month old children in nanoro, Burkina Faso 2019 [cited 2023 Feb 8]. Available from: https://clinicaltrials.gov/ct2/show/NCT03896724
  • Trials C 2023 [cited 2023 Feb 8]. Available from: https://clinicaltrials.gov/ct2/results?cond=&term=R21&cntry=&state=&city=&dist=
  • Belete TM. Recent progress in the development of new antimalarial drugs with novel targets. Drug Des Devel Ther. 2020;14:3875–3889. PubMed PMID: 33061294; PubMed Central PMCID: PMCPMC7519860. eng. DOI:10.2147/dddt.S265602.
  • MMV. 50 active partners in MMV’s network, working to help defeat malaria 2021. [cited 2023 Mar 1]; Available from: https://www.mmv.org/our-impact/achievements/150-active-partners-mmvs-network-working-help-defeat-malaria
  • Fontinha D, Moules I, Prudêncio M. Repurposing drugs to fight hepatic malaria parasites. Molecules. 2020;25(15):3409. DOI:10.3390/molecules25153409.
  • Yang T, Ottilie S, Istvan ES, et al. MalDA, accelerating malaria drug discovery. Trends Parasitol. 2021;37(6):493–507. DOI:10.1016/j.pt.2021.01.009
  • Tisnerat C, Dassonville-Klimpt A, Gosselet F, et al. Antimalarial drug discovery: from quinine to the most recent promising clinical drug candidates. Curr Med Chem. 2022;29(19):3326–3365. DOI:10.2174/0929867328666210803152419
  • Pacheco PAF, Santos MMM. Recent progress in the development of indole-based compounds active against malaria, trypanosomiasis and leishmaniasis. Molecules. 2022;27(1):319. PubMed PMID.
  • Consalvi S, Tammaro C, Appetecchia F, et al. Malaria transmission blocking compounds: a patent review. Expert Opin Ther Patents. 2022;32(6):649–666. DOI:10.1080/13543776.2022.2049239
  • Raj DK, Das Mohapatra A, Jnawali A, et al. Anti-PfGARP activates programmed cell death of parasites and reduces severe malaria. Nature. 2020 Jun;582(7810):104–108. PubMed PMID: 32427965; PubMed Central PMCID: PMCPMC7372601. DOI:10.1038/s41586-020-2220-1
  • Kurtis J, Oleinikov AV, Raj D, inventors. Compositions and methods for the treatment of plasmodium falciparum malaria patent WO2022/183111 A1. 2022.
  • WAIDYARACHCHI SL, Nguyen ST, DING X, et al., inventors. Compounds and methods for treating malaria patent WO2022159649A1. 2022.
  • Lisk G, Desai SA. The plasmodial surface anion channel is functionally conserved in divergent malaria parasites. Eukaryot Cell. 2005 Dec;4(12):2153–2159. DOI:10.1128/Ec.4.12.2153-2159.2005. PubMed PMID: WOS:000234032300019. English
  • Desai SA. Open and closed states of the plasmodial surface anion channel. Nanomed-Nanotechnol. 2005 Mar;1(1):58–66; PubMed PMID: WOS:000209817900009. English. DOI:10.1016/j.nano.2004.11.001.
  • Gupta A, Balabaskaran-Nina P, Nguitragool W, et al. CLAG3 self-associates in malaria parasites and quantitatively determines nutrient uptake channels at the host membrane. Mbio. 2018 May;9(3):p. e02293. DOI:10.1128/mBio.01181-18. PubMed PMID: WOS:000454748900045; PubMed PMID: WOS:000454748900045
  • Wang Q, Rosa BA, Nare B, et al. Targeting lysine deacetylases (KDACs) in parasites. PLoS Negl Trop Dis. 2015;9(9):e0004026. DOI:10.1371/journal.pntd.0004026. PubMed PMID: 26402733
  • Sambasivam G, Gavara GR, Potluri V, et al., inventors. Treatment of malaria using histone deacetylase (hdac) inhibitors patent WO2021090194A1. 2021.
  • Wang YF, Stowe RL, Pinello CE, et al. Identification of histone deacetylase inhibitors with benzoylhydrazide scaffold that selectively inhibit class I histone deacetylases. Chem Biol. 2015 Feb 19;22(2):273–284. DOI:10.1016/j.chembiol.2014.12.015 PubMed PMID: WOS:000349966200012. English.
  • Mok S, Imwong M, Mackinnon MJ, et al. Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription. BMC Genomics. 2011 Aug 3;12. DOI:10.1186/1471-2164-12-391. PubMed PMID: WOS:000294426400001. PubMed PMID: WOS:000294426400001
  • TORTORELLA MD, Chen X, L DAI, et al., inventors. Pyrrolidine compounds for the treatment of malaria patent WO2020/107189 A1. 2020.
  • Smilkstein M, Sriwilaijaroen N, Kelly JX, et al. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother. 2004 May;48(5):1803–1806. DOI:10.1128/AAC.48.5.1803-1806.2004. PubMed PMID: 15105138; PubMed Central PMCID: PMCPMC400546.
  • Sleebs BE, Lopaticki S, Marapana DS, et al. Inhibition of plasmepsin V activity demonstrates its essential role in protein export, PfEMP1 display, and survival of malaria parasites. PLoS Biol. 2014 Jul;12(7):e1001897. DOI:10.1371/journal.pbio.1001897. PubMed PMID: 24983235; PubMed Central PMCID: PMCPMC4077696.
  • Hodder AN, Sleebs BE, Czabotar PE, et al. Structural basis for plasmepsin V inhibition that blocks export of malaria proteins to human erythrocytes. Nat Struct Mol Biol. 2015 Aug;22(8):590–596. DOI:10.1038/nsmb.3061. PubMed PMID: 26214367.
  • KHAN TA, Cumming JN, Olsen DB, et al., inventors. Compounds for the treatment of malaria patent WO2017142821A1. 2017.
  • Peterson DS, Walliker D, Wellems TE. Evidence that a point mutation in dihydrofolate-reductase thymidylate synthase confers resistance to pyrimethamine in falciparum-malaria. P Natl Acad Sci USA. 1988 Dec;85(23):9114–9118; PubMed PMID: WOS:A1988R155000072. English. DOI:10.1073/pnas.85.23.9114.
  • KAMCHONWONGPAISON S, CHAROENSETAKUL N, PEEWASAN K, et al., inventors. 2,4-diamino-6-ethylpyrimidine derivatives with antimalarial activities against plasmodium falciparum patent WO2017052479A1. 2017.
  • Yuthavong Y, Tarnchompoo B, Vilaivan T, et al. Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. P Natl Acad Sci USA. 2012 Oct 16;109(42):16823–16828. DOI:10.1073/pnas.1204556109 PubMed PMID: WOS:000310515800024. English.
  • Kongsaeree P, Khongsuk P, Leartsakulpanich U, et al. Crystal structure of dihydrofolate reductase from Plasmodium vivax: pyrimethamine displacement linked with mutation-induced resistance. P Natl Acad Sci USA. 2005 Sep 13;102(37):13046–13051. DOI:10.1073/pnas.0501747102 PubMed PMID: WOS:000231916300010. English.
  • Yeh E, DeRisi JL. Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. PLoS Biol. 2011 Aug;9(8):e1001138. PubMed PMID: 21912516; PubMed Central PMCID: PMCPMC3166167. DOI:10.1371/journal.pbio.1001138.
  • Jomaa H, Wiesner J, Sanderbrand S, et al. Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science. 1999 Sep 3;285(5433):1573–1576. DOI:10.1126/science.285.5433.1573. PubMed PMID: WOS:000082359500067. PubMed PMID: WOS:000082359500067
  • Odom A, O’Neill P, Berry N. inventors. Treatment of malaria using inhibitors of the ispd enzyme in the non-mevalonate pathway patent US20160046651A1. 2016.
  • Glennon EKK, Dankwa S, Smith JD, et al. Opportunities for host-targeted therapies for malaria. Trends Parasitol. 2018 Oct;34(10):843–860. DOI:10.1016/j.pt.2018.07.011. PubMed PMID: 30122551; PubMed Central PMCID: PMCPMC6168423.
  • Langhorne J, Duffy PE. Expanding the antimalarial toolkit: targeting host-parasite interactions. J Experiment Med. 2016 Feb 8;213(2):143–153. DOI:10.1084/jem.20151677. PubMed PMID: WOS:000373383700003. PubMed PMID: WOS:000373383700003
  • Paone S, D’Alessandro S, Parapini S, et al. Characterization of the erythrocyte GTPase Rac1 in relation to Plasmodium falciparum invasion. Sci Rep-UK. 2020 Dec 16;10(1). PubMed PMID: WOS:000603657800020. DOI:10.1038/s41598-020-79052-0. English.
  • OLIVIERI A, PAONE S, TIRELLI V, et al., inventors. Inhibitor compounds of the human GTPase Rac1 for use in the treatment of malaria patent WO2019122981A1. 2019.
  • Parapini S, Paone S, Erba E, et al. In Vitro antimalarial activity of inhibitors of the human gTPase rac1. Antimicrob Agents Ch. 2022 Jan;66(1). PubMed PMID: WOS:000747519500039. DOI:10.1128/AAC.01498-21. English.
  • Walters WP, Wang R. New trends in virtual screening. J Chem Inf Model. 2019 Sep 23;59(9):3603–3604. PubMed PMID: 31502445. DOI:10.1021/acs.jcim.9b00728.
  • SETUA S, Mota MMDD, ENGUITA FJ, et al., inventors. Anti malarial compounds patent US 2022/0211698 A1. 2022.
  • Irwin JJ, Shoichet BK. Zinc–a free database of commercially available compounds for virtual screening. J Chem Inf Model. 2005 Jan;45(1):177–182. PubMed PMID: 15667143; PubMed Central PMCID: PMCPMC1360656. DOI:10.1021/ci049714+.
  • Farre JC, Subramani S. Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat Rev Mol Cell Bio. 2016 Sep;17(9):537–552; PubMed PMID: WOS:000382331900007. English. DOI:10.1038/nrm.2016.74.
  • Real E, Rodrigues L, Cabal GG, et al. Plasmodium UIS3 sequesters host LC3 to avoid elimination by autophagy in hepatocytes. Nat Microbiol PubMed PMID: WOS:000422983100006. 2018 Jan;3(1):17–25. English. DOI:10.1038/s41564-017-0054-x
  • BRIZUELA AES, LORENZO EEC, Bosch J, inventors. Compounds with antimalarial activity patent WO2020/209932 A1. 2020.
  • Hiller N, Fritz-Wolf K, Deponte M, et al. Plasmodium falciparum glutathione S-transferase–structural and mechanistic studies on ligand binding and enzyme inhibition. Protein Sci. 2006 Feb;15(2):281–289. DOI:10.1110/ps.051891106. PubMed PMID: 16385005; PubMed Central PMCID: PMCPMC2242455.
  • Serrano-Brizuela AE, Colón-Lorenzo EE, Bosh J, et al., inventors. Inhibitors of the malarial GST patent US 10,744,119 B1. 2020.
  • Gerwick W, VERDUGO BB, O’donoghue A, et al., inventors. Immunoproteasome inhibitor patent WO2018/213263 A1. 2018.
  • Pereira AR, Kale AJ, Fenley AT, et al. The carmaphycins: new proteasome inhibitors exhibiting an alpha,beta-epoxyketone warhead from a marine cyanobacterium. Chembiochem. 2012 Apr 16;13(6):810–817. DOI:10.1002/cbic.201200007. PubMed PMID: 22383253; PubMed Central PMCID: PMCPMC3393770.
  • Krollenbrock A, Riscoe MK, inventors. Robenidine analogs as potent antimalarials against drug, inventors. Robenidine analogs as potent antimalarials against drugresistant plasmodium falciparum patent US2022/0267258 A1. 2022.
  • Kantor S, Kennett RL Jr., Waletzky E, et al. 1,3-Bis(p-chlorobenzylideneamino)guanidine hydrochloride (robenzidene): new poultry anticoccidial agent. Science. 168(3929). PubMed PMID: 5435895. 373–374. 1970 Apr 17. DOI:10.1126/science.168.3929.373.
  • Wilson RJ, Denny PW, Preiser PR, et al. Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol. 1996 Aug 16;261(2):155–172. DOI:10.1006/jmbi.1996.0449. PubMed PMID: 8757284.
  • Das Gupta R, Krause-Ihle T, Bergmann B, et al. 3-aminooxy-1-aminopropane and derivatives have an antiproliferative effect on cultured Plasmodium falciparum by decreasing intracellular polyamine concentrations. Antimicrob Agents Ch. 2005 Jul;49(7):2857–2864. DOI: 10.1128/Aac.49.7.2857-2864.2005 English PubMed PMID: WOS:000230181800040.
  • KNAPP S, BARROWS RD, Guy RK, et al., inventors. Compositions and methods for treating malaria patent WO2021/167894 A1. 2021.
  • FAYAD AA, HERRMANN J, JUNGMANN K, et al., inventors. Chlorotonil derivatives patent WO2019/092030 A1. 2019.
  • Held J, Gebru T, Kalesse M, et al. Antimalarial activity of the myxobacterial macrolide chlorotonil a. Antimicrob Agents Chemother. 2014 Nov;58(11):6378–6384. DOI:10.1128/AAC.03326-14. PubMed PMID: 25114138; PubMed Central PMCID: PMCPMC4249382.
  • Gerth K, Steinmetz H, Hofle G, et al. Chlorotonil A, a macrolide with a unique gem-dichloro-1,3-dione functionality from sorangium cellulosum, so ce1525. Angew Chem Int Ed Engl. 2008;47(3):600–602. PubMed PMID: 18058875 DOI:10.1002/anie.200703993.
  • Foley M, Tilley L. Quinoline antimalarials: mechanisms of action and resistance. Int J Parasitol. 1997 Feb;27(2):231–240. PubMed PMID: 9088993. DOI:10.1016/s0020-7519(96)00152-x.
  • Manetsch R, Kyle DE, Neelarapu R, et al., inventors. Quinolone-based compounds, formulations, and uses thereof patent US10,000,452 B1. 2018.
  • Vennerstrom JL, Dong Y, Charman SA, et al., inventors. Dispiro 1,2,4-trioxolane antimalarials patent WO2009058859A2. 2009.
  • Vennerstrom JL, Dong Y, Charman SA, et al., inventors. Spiro and dispiro 1,2,4-trioxolane antimalarials patent WO2009091433A2. 2009.
  • Charman SA, Arbe-Barnes S, Bathurst IC, et al. Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4400–4405. DOI:10.1073/pnas.1015762108. PubMed PMID: 21300861; PubMed Central PMCID: PMCPMC3060245.
  • Vennerstrom JL, Charman SA, inventors. New anti-malarial agent patent WO2018/069420 A1. 2018.
  • REDDY DS, Shanmugam D, RAMESH R, et al. Silicon based cyclic compounds and pharmaceutical compositions for treating malaria and toxoplasmosis patent WO2017/141272 A1. 2017. inventors
  • EISOHLY MA, Gul W, inventors. Selected artemisinin dimers for the treatment of lashmaniasis patent WO2020176488A1. 2020.
  • Lin G, ZHAN W, Zhang H, et al., inventors. Artemisinin-proteasome inhibitor conjugates and their use in the treatment of disease patent WO2022159581A2. 2022.
  • Bhattacharya AK, ARATIKATLA EK, Malhotra P, et al., inventors. Novel antimalarial compounds, process for preparation and their use for drug resistant malaria patent WO2019/202609. 2019.
  • Zhao M, Zhou L-M, inventors. Artemisinin-derived trimers and tetramers and their use thereof patent WO2019/104247. 2019.
  • Bridgford JL, Xie SC, Cobbold SA, et al. Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome. Nat Commun. 2018 Sep 18;9(1):3801. DOI:10.1038/s41467-018-06221-1. PubMed PMID: 30228310; PubMed Central PMCID: PMCPMC6143634.
  • Beeson JG, Kurtovic L, Dobaño C, et al. Challenges and strategies for developing efficacious and long-lasting malaria vaccines. Sci, trans med. 2019;11(474):eaau1458. DOI:10.1126/scitranslmed.aau1458
  • Cai JJ, Chen SL, Zhu F, et al. Whole-killed blood-stage vaccine: is it worthwhile to further develop it to control malaria? Front Microbiol. 2021 Apr 30;12. DOI:10.3389/fmicb.2021.670775.
  • Takashima E, Tachibana M, Morita M, et al. Identification of novel malaria transmission-blocking vaccine candidates. Front Cell Infect Mi. 2021 Nov 30;11. PubMed PMID: WOS:000729913500001 ARTN 805482. DOI:10.3389/fcimb.2021.805482. English.
  • Lozano JM, Parra ZR, Hernandez-Martinez S, et al. The search of a malaria vaccine: the time for modified immuno-potentiating probes. Vaccines-Basel. 2021 Feb;9(2). PubMed PMID: WOS:000623303600001. DOI:10.3390/vaccines9020115. English.
  • Hill AVS, Ewer K, inventors. Malaria vaccine WO2019021013 A1. 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.