160
Views
0
CrossRef citations to date
0
Altmetric
Review

Targeting carbonic anhydrases for the management of hypoxic metastatic tumors

Pages 701-720 | Received 16 May 2023, Accepted 04 Aug 2023, Published online: 12 Aug 2023

References

  • Aspatwar A, Tolvanen MEE, Barker H, et al. Carbonic anhydrases in metazoan model organisms: molecules, mechanisms, and physiology. Physiol Rev. 2022;102(3):1327–1383. doi: 10.1152/physrev.00018.2021
  • Smith KS, Jakubzick C, Whittam TS, et al. Carbonic anhydrase is an ancient enzyme widespread in prokaryotes. Proc Natl Acad Sci U S A. 1999;96(26):15184–15189. doi: 10.1073/pnas.96.26.15184
  • Ueda K, Nishida H, Beppu T. Dispensabilities of carbonic anhydrase in proteobacteria. Int J Evol Biol. 2012;2012:1–5. doi: 10.1155/2012/324549
  • Capasso C, Supuran CT. An overview of the alpha-, beta- and gamma-carbonic anhydrases from Bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria? J Enzyme Inhib Med Chem. 2015;30(2):325–332. doi: 10.3109/14756366.2014.910202
  • Nocentini A, Supuran CT, Capasso C. An overview on the recently discovered iota-carbonic anhydrases. J Enzyme Inhib Med Chem. 2021;36(1):1988–1995. doi: 10.1080/14756366.2021.1972995
  • Supuran CT. Structure and function of carbonic anhydrases. Biochem J. 2016;473(14):2023–2032. doi: 10.1042/BCJ20160115
  • Pastorek J, Pastoreková S, Callebaut I, et al. Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment. Oncogene. 1994;9:2877–2888.
  • Türeci O, Sahin U, Vollmar E, et al. Human carbonic anhydrase XII: cDNA cloning, expression, and chromosomal localization of a carbonic anhydrase gene that is overexpressed in some renal cell cancers. Proc Natl Acad Sci U S A. 1998;95(13):7608–7613. doi: 10.1073/pnas.95.13.7608
  • Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov. 2011;10(10):767–777. doi: 10.1038/nrd3554
  • Semenza GL. Pharmacologic targeting of hypoxia-inducible factors. Annu Rev Pharmacol Toxicol. 2019;59(1):379–403. doi: 10.1146/annurev-pharmtox-010818-021637
  • Kaelin WJ. The vhl tumor suppressor gene: insights into oxygen sensing and cancer. Trans Am Clin Climatol Assoc. 2017;128:298–307. doi: 10.1053/j.ajkd.2016.12.011
  • Pugh CW, Ratcliffe PJ. New horizons in hypoxia signaling pathways. Exp Cell Res. 2017;356(2):116–121. doi: 10.1016/j.yexcr.2017.03.008
  • Pettersen EO, Ebbesen P, Gieling RG, et al. Targeting tumour hypoxia to prevent cancer metastasis. From biology, biosensing and technology to drug development: the METOXIA consortium. J Enzyme Inhib Med Chem. 2015;30(5):689–721. doi: 10.3109/14756366.2014.966704
  • Wykoff CC, Beasley NJ, Watson PH, et al. Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res. 2000;60:7075–7083.
  • Svastová E, Hulíková A, Rafajová M, et al. Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett. 2004;577(3):439–445. doi: 10.1016/j.febslet.2004.10.043
  • Dubois L, Douma K, Supuran CT, et al. Imaging the hypoxia surrogate marker CA IX requires expression and catalytic activity for binding fluorescent sulfonamide inhibitors. Radiother Oncol. 2007;83(3):367–373. doi: 10.1016/j.radonc.2007.04.018
  • Lou Y, McDonald PC, Oloumi A, et al. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res. 2011;71(9):3364–3376. doi: 10.1158/0008-5472.CAN-10-4261
  • Gieling RG, Babur M, Mamnani L, et al. Antimetastatic effect of sulfamate carbonic anhydrase IX inhibitors in breast carcinoma xenografts. J Med Chem. 2012;55(11):5591–5600. doi: 10.1021/jm300529u
  • Ahlskog JK, Dumelin CE, Trüssel S, et al. In vivo targeting of tumor-associated carbonic anhydrases using acetazolamide derivatives. Bioorg Med Chem Lett. 2009;19(16):4851–4856. doi: 10.1016/j.bmcl.2009.06.022
  • Lock FE, McDonald PC, Lou Y, et al. Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche. Oncogene. 2013 Oct 31;32(44):5210–5219. doi: 10.1038/onc.2012.550
  • Supuran CT, Alterio V, Di Fiore A, et al. Inhibition of carbonic anhydrase IX targets primary tumors, metastases, and cancer stem cells: Three for the price of one. Med Res Rev. 2018;38(6):1799–1836. doi: 10.1002/med.21497
  • McDonald PC, Chafe SC, Supuran CT, et al. Cancer therapeutic targeting of hypoxia induced carbonic anhydrase ix: from bench to bedside. Cancers (Basel). 2022;14(14):3297. doi: 10.3390/cancers14143297
  • Supuran CT. Carbonic anhydrase inhibitors as emerging agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs. 2018;27(12):963–970. doi: 10.1080/13543784.2018.1548608
  • Supuran CT. Carbonic anhydrase inhibitors: an update on experimental agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs. 2021;30(12):1197–1208. doi: 10.1080/13543784.2021.2014813
  • Angeli A, Carta F, Nocentini A, et al. Carbonic anhydrase inhibitors targeting metabolism and tumor microenvironment. Metabolites. 2020;10(10):412. doi: 10.3390/metabo10100412
  • Pastorekova S, Gillies RJ. The role of carbonic anhydrase IX in cancer development: links to hypoxia, acidosis, and beyond. Cancer Metastasis Rev. 2019;38(1–2):65–77. doi: 10.1007/s10555-019-09799-0
  • Nocentini A, Supuran CT. Carbonic anhydrase inhibitors as antitumor/antimetastatic agents: a patent review (2008-2018). Expert Opin Ther Pat. 2018;28(10):729–740. doi: 10.1080/13543776.2018.1508453
  • Nerella SG, Singh P, Arifuddin M, et al. Anticancer carbonic anhydrase inhibitors: a patent and literature update 2018-2022. Expert Opin Ther Pat. 2022;32(8):833–847. doi: 10.1080/13543776.2022.2083502
  • Supuran CT. Latest advances in specific inhibition of tumor-associated carbonic anhydrases. Future Med Chem. 2023;15(1):5–7. doi: 10.4155/fmc-2022-0249
  • Pastoreková S, Pastorek J. Cancer-related carbonic anhydrase isozymes and their inhibition. In: Supuran C, Scozzafava A, and Conway J, editors. Carbonic anhydrase – its inhibitors and activators. Boca Raton (FL): CRC Press; 2004. p. 255–281. doi: 10.1201/9780203475300.ch9
  • Supuran CT. Emerging role of carbonic anhydrase inhibitors. Clin Sci. 2021;135(10):1233–1249. doi: 10.1042/CS20210040
  • Saarnio J, Parkkila S, Parkkila AK, et al. Immunohistochemical study of colorectal tumors for expression of a novel transmembrane carbonic anhydrase, MN/CA IX, with potential value as a marker of cell proliferation. Am J Pathol. 1998;153(1):279–285. doi: 10.1016/S0002-9440(10)65569-1
  • Potter C, Harris AL. Hypoxia inducible carbonic anhydrase IX, marker of tumour hypoxia, survival pathway and therapy target. Cell Cycle. 2004;3(2):164–167. doi: 10.4161/cc.3.2.618
  • Haapasalo JA, Nordfors KM, Hilvo M, et al. Expression of carbonic anhydrase IX in astrocytic tumors predicts poor prognosis. Clin Cancer Res. 2006;12(2):473–477. doi: 10.1158/1078-0432.CCR-05-0848
  • Takacova M, Bartosova M, Skvarkova L, et al. Carbonic anhydrase IX is a clinically significant tissue and serum biomarker associated with renal cell carcinoma. Oncol Lett. 2013;5(1):191–197. doi: 10.3892/ol.2012.1001
  • Viikilä P, Kivelä AJ, Mustonen H, et al. Carbonic anhydrase enzymes II, VII, IX and XII in colorectal carcinomas. World J Gastroenterol. 2016;22(36):8168–8177. doi: 10.3748/wjg.v22.i36.8168
  • Parkkila S, Lasota J, Fletcher JA, et al. Carbonic anhydrase II. A novel biomarker for gastrointestinal stromal tumors. Mod Pathol. 2010;23(5):743–750. doi: 10.1038/modpathol.2009.189
  • Giatromanolaki A, Harris AL, Banham AH, et al. Carbonic anhydrase 9 (CA9) expression in non-small-cell lung cancer: correlation with regulatory FOXP3+T-cell tumour stroma infiltration. Br J Cancer. 2020;122(8):1205–1210. doi: 10.1038/s41416-020-0756-3
  • Haapasalo J, Nordfors K, Haapasalo H, et al. The expression of carbonic anhydrases ii, ix and xii in brain tumors. Cancers (Basel). 2020;12(7):1723. doi: 10.3390/cancers12071723
  • Li G, Chen TW, Nickel AC, et al. Carbonic anhydrase xii is a clinically significant, molecular tumor-subtype specific therapeutic target in glioma with the potential to combat invasion of brain tumor cells. Onco Targets Ther. 2021;14:1707–1718. DOI:10.2147/OTT.S300623
  • Nortunen M, Parkkila S, Saarnio J, et al. Carbonic anhydrases ii and ix in non-ampullary duodenal adenomas and adenocarcinoma. J Histochem Cytochem. 2021;69(11):677–690. doi: 10.1369/00221554211050133
  • Rezuchova I, Bartosova M, Belvoncikova P, et al. Carbonic anhydrase ix in tumor tissue and plasma of breast cancer patients: reliable biomarker of hypoxia and prognosis. Int J Mol Sci. 2023;24(5):4325. doi: 10.3390/ijms24054325
  • Shamis SAK, Edwards J, McMillan DC. The relationship between carbonic anhydrase IX (CAIX) and patient survival in breast cancer: systematic review and meta-analysis. Diagn Pathol. 2023;18(1):46. doi: 10.1186/s13000-023-01325-9
  • Numprasit W, Yangngam S, Prasopsiri J, et al. Carbonic anhydrase IX-related tumoral hypoxia predicts worse prognosis in breast cancer: A systematic review and meta-analysis. Front Med. 2023;10:1087270. DOI:10.3389/fmed.2023.1087270
  • Bádon ES, Beke L, Mokánszki A, et al. Carbonic anhydrase ix expression and treatment response measured in rectal adenocarcinoma following neoadjuvant chemo-radiotherapy. Int J Mol Sci. 2023;24(3):2581. doi: 10.3390/ijms24032581
  • Xiang AP, Chen XN, Xu PF, et al. Expression and prognostic value of carbonic anhydrase IX (CA-IX) in bladder urothelial carcinoma. BMC Urol. 2022;22(1):120. doi: 10.1186/s12894-022-01074-9
  • Hiepp L, Mayr D, Gärtner K, et al. Carbonic anhydrase XII as biomarker and therapeutic target in ovarian carcinomas. PLoS One. 2022;17(7):e0271630. doi: 10.1371/journal.pone.0271630
  • Shamis SAK, Quinn J, Mallon EEA, et al. The relationship between the tumor cell expression of hypoxic markers and survival in patients with er-positive invasive ductal breast cancer. J Histochem Cytochem. 2022;70(7):479–494. doi: 10.1369/00221554221110280
  • Xu B, Lou Y, Xu X, et al. Carbonic anhydrase 4 serves as a novel prognostic biomarker and therapeutic target for non-small cell lung cancer: a study based on TCGA samples. Comb Chem High Throughput Screen. 2023. in press. doi: 10.2174/1386207326666230321091943
  • Fei L, Cantini G, Nocentini A, et al. Carbonic anhydrases III and IX are new players in the crosstalk between adrenocortical carcinoma and its altered adipose microenvironment. J Endocrinol Invest. 2023;46(7):1449–1458. doi: 10.1007/s40618-023-02008-4
  • Chen F, Licarete E, Wu X, et al. Pharmacological inhibition of carbonic anhydrase IX and XII to enhance targeting of acute myeloid leukaemia cells under hypoxic conditions. J Cell Mol Med. 2021;25(24):11039–11052. doi: 10.1111/jcmm.17027
  • Alyaqubi KJ, Dosh RH, Al-Fatlawi RB, et al. Gene expression of carbonic anhydrase 9 (CA9) in de novo acute leukemia as a predictive marker for prognosis. J Med Life. 2022;15(9):1158–1163. doi: 10.25122/jml-2021-0212
  • Romeo PH, Lewandowski D, Barroca V, et al. Carbonic anhydrase 1 (CA1) inhibitors for the treatment or prevention of myeloproliferative disorders and other hematopoietic malignancies, and as biomarker of myeloproliferative disorders and other hematopoietic malignancies. EP4062909A1. 2022.
  • Murakami S, Barroca V, Perié L, et al. In Vivo monitoring of polycythemia vera development reveals carbonic anhydrase 1 as a potent therapeutic target. Blood Cancer Discov. 2022;3(4):285–297. doi: 10.1158/2643-3230.BCD-21-0039
  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov. 2008;7(2):168–181. doi: 10.1038/nrd2467
  • Demandt JAF, Dubois LJ, van Kuijk K, et al. The hypoxia-sensor carbonic anhydrase IX affects macrophage metabolism, but is not a suitable biomarker for human cardiovascular disease. Sci Rep. 2021;11(1):425. doi: 10.1038/s41598-020-79978-5
  • Zatovicova M, Kajanova I, Takacova M, et al. ADAM10 mediates shedding of carbonic anhydrase IX ectodomain non‑redundantly to ADAM17. Oncol Rep. 2023;49(2):27. doi: 10.3892/or.2022.8464
  • Logozzi M, Capasso C, Di Raimo R, et al. Prostate cancer cells and exosomes in acidic condition show increased carbonic anhydrase IX expression and activity. J Enzyme Inhib Med Chem. 2019;34(1):272–278. doi: 10.1080/14756366.2018.1538980
  • Logozzi M, Mizzoni D, Capasso C, et al. Plasmatic exosomes from prostate cancer patients show increased carbonic anhydrase IX expression and activity and low pH. J Enzyme Inhib Med Chem. 2020;35(1):280–288. doi: 10.1080/14756366.2019.1697249
  • Venturella M, Falsini A, Coppola F, et al. CA-IX-Expressing Small Extracellular Vesicles (sEvs) are released by melanoma cells under hypoxia and in the blood of advanced melanoma patients. Int J Mol Sci. 2023;24(7):6122. doi: 10.3390/ijms24076122
  • Salciccia S, Frisenda M, Bevilacqua G, et al. Exosome analysis in prostate cancer: how they can improve biomarkers. Perf Curr Issues Mol Biol. 2023;45(7):6085–6096. doi: 10.3390/cimb45070384
  • Zatovicova M, Jelenska L, Hulikova A, et al. Carbonic anhydrase IX as an anticancer therapy target: preclinical evaluation of internalizing monoclonal antibody directed to catalytic domain. Curr Pharm Des. 2010;16(29):3255-63–. doi: 10.2174/138161210793429832
  • Lam JS, Pantuck AJ, Belldegrun AS, et al. G250: a carbonic anhydrase IX monoclonal antibody. Curr Oncol Rep. 2005;7(2):109–115. doi: 10.1007/s11912-005-0036-7
  • Zatovicova M, Jelenska L, Hulikova A, et al. Monoclonal antibody G250 targeting CA Ⅸ: binding specificity, internalization and therapeutic effects in a non-renal cancer model. Int J Oncol. 2014;45(6):2455–2467. doi: 10.3892/ijo.2014.2658
  • Tataru OS, Marchioni M, Crocetto F, et al. Molecular imaging diagnosis of renal cancer using 99mTc-Sestamibi SPECT/CT and girentuximab PET-ct-current evidence and future development of novel techniques. Diagnostics. 2023;13(4):593. doi: 10.3390/diagnostics13040593
  • Verhoeff SR, Oosting SF, Elias SG, et al. [89Zr]Zr-DFO-girentuximab and [18F]FDG PET/CT to predict watchful waiting duration in patients with metastatic clear-cell renal cell carcinoma. Clin Cancer Res. 2023;29(3):592–601. doi: 10.1158/1078-0432.CCR-22-0921
  • Al-Zubaidi M, Viswambaram P, McCombie S, et al. 89Zirconium-labelled girentuximab (89Zr-TLX250) PET in urothelial cancer patients (ZiPUP): protocol for a phase I trial of a novel staging modality for urothelial carcinoma. BMJ Open. 2022;12(4):e060478. doi: 10.1136/bmjopen-2021-060478
  • van Oostenbrugge T, Mulders P. Targeted PET/CT imaging for clear cell renal cell carcinoma with radiolabeled antibodies: recent developments using girentuximab. Curr Opin Urol. 2021;31(3):249–254. doi: 10.1097/MOU.0000000000000872
  • van Oostenbrugge TJ, Langenhuijsen JF, Oosterwijk E, et al. Follow-up imaging after cryoablation of clear cell renal cell carcinoma is feasible using single photon emission computed tomography with 111In-girentuximab. Eur J Nucl Med Mol Imaging. 2020;47(8):1864–1870. doi: 10.1007/s00259-019-04613-z
  • ClinicalTrials. gov Identifier: NCT05239533 and ClinicalTrials.gov Identifier: NCT00087022
  • Takacova M, Kajanova I, Kolarcikova M, et al. Understanding metabolic alterations and heterogeneity in cancer progression through validated immunodetection of key molecular components: a case of carbonic anhydrase IX. Cancer Metastasis Rev. 2021;40(4):1035–1053. doi: 10.1007/s10555-021-10011-5
  • Zatovicova M, Kajanova I, Barathova M, et al. Novel humanized monoclonal antibodies for targeting hypoxic human tumors via two distinct extracellular domains of carbonic anhydrase IX. Cancer Metab. 2022;10(1):3. doi: 10.1186/s40170-022-00279-8
  • Antal I, Koneracka M, Kubovcikova M, et al. Targeting of carbonic anhydrase IX-positive cancer cells by glycine-coated superparamagnetic nanoparticles. Colloids Surf B Biointerfaces. 2021;205:111893. DOI:10.1016/j.colsurfb.2021.111893
  • Kálosi A, Labudová M, Annušová A, et al. A bioconjugated MoS2 based nanoplatform with increased binding efficiency to cancer cells. Biomater Sci. 2020;8(7):1973–1980. doi: 10.1039/C9BM01975H
  • Bugárová N, Špitálsky Z, Mičušík M, et al. A multifunctional graphene oxide platform for targeting cancer. Cancers (Basel). 2019;11(6):753. doi: 10.3390/cancers11060753
  • Sheff JG, Kelly JF, Robotham A, et al. Hydrogen-deuterium exchange mass spectrometry reveals three unique binding responses of mAbs directed to the catalytic domain of hCAIX. MAbs. 2021;13(1):1997072. doi: 10.1080/19420862.2021.1997072
  • Lenferink AEG, Arabi GM, Rohani N, et al. Single domain antibodies targeting CA-IX as well as compositions comprising same. WO2022157714. 2022.
  • Lenferink AEG, O’Connor M. High affinity monoclonal antibodies against cell surface expressed human carbonic anhydrase-IX (HCA-IX), and uses thereof. WO2019204939. 2019.
  • Lenferink AEG, McDonald PC, Cantin C, et al. Isolation and characterization of monoclonal antibodies against human carbonic anhydrase-IX. MAbs. 2021;13(1):1999194. doi: 10.1080/19420862.2021.1999194
  • Testa C, Papini AM, Zeidler R, et al. First studies on tumor associated carbonic anhydrases IX and XII monoclonal antibodies conjugated to small molecule inhibitors. J Enzyme Inhib Med Chem. 2022;37(1):592–596. doi: 10.1080/14756366.2021.2004593
  • Battke C, Kremmer E, Mysliwietz J, et al. Generation and characterization of the first inhibitory antibody targeting tumour-associated carbonic anhydrase XII. Cancer Immunol Immunother. 2011;60(5):649–658. doi: 10.1007/s00262-011-0980-z
  • Zeidler R, Battke C, Flathey E, et al. Novel antibody to a carbonic anhydrase. 2011. WO2011138279
  • Gondi G, Mysliwietz J, Hulikova A, et al. Antitumor efficacy of a monoclonal antibody that inhibits the activity of cancer-associated carbonic anhydrase XII. Cancer Res. 2013;73(21):6494–6503. doi: 10.1158/0008-5472.CAN-13-1110
  • Fiedler L, Kellner M, Gosewisch A, et al. Evaluation of 177Lu[Lu]-CHX-A″-DTPA-6A10 Fab as a radioimmunotherapy agent targeting carbonic anhydrase XII. Nucl Med Biol. 2018;60:55–62. DOI:10.1016/j.nucmedbio.2018.02.004
  • von Neubeck B, Gondi G, Riganti C, et al. An inhibitory antibody targeting carbonic anhydrase XII abrogates chemoresistance and significantly reduces lung metastases in an orthotopic breast cancer model in vivo. Int J Cancer. 2018;143(8):2065–2075. doi: 10.1002/ijc.31607
  • Alterio V, Kellner M, Esposito D, et al. Biochemical and structural insights into carbonic anhydrase xii/fab6a10 complex. J Mol Biol. 2019;431(24):4910–4921. doi: 10.1016/j.jmb.2019.10.022
  • Zeidler R. Novel Fab dimers. EP4119581. 2023.
  • Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem. 2016;31(3):345–360. doi: 10.3109/14756366.2015.1122001
  • Supuran CT. Carbon- versus sulphur-based zinc binding groups for carbonic anhydrase inhibitors? J Enzyme Inhib Med Chem. 2018;33(1):485–495. doi: 10.1080/14756366.2018.1428572
  • Supuran CT. Experimental carbonic anhydrase inhibitors for the treatment of hypoxic tumors. J Exp Pharmacol. 2020;12:603–617. doi: 10.2147/JEP.S265620
  • McDonald PC, Chia S, Bedard PL, et al. A Phase 1 Study of SLC-0111, a novel inhibitor of carbonic anhydrase ix, in patients with advanced solid tumors. Am J Clin Oncol. 2020;43(7):484–490. doi: 10.1097/COC.0000000000000691
  • Lolak N, Akocak S, Petreni A, et al. 1,3-Diaryl triazenes incorporating disulfonamides show effective inhibition of tumor-associated carbonic anhydrases IX and XII. Future Med Chem. 2023. in press.
  • Tekeli T, Akocak S, Petreni A, et al. Potent carbonic anhydrase I, II, IX and XII inhibition activity of novel primary benzenesulfonamides incorporating bis-ureido moieties. J Enzyme Inhib Med Chem. 2023;38(1):2185762. doi: 10.1080/14756366.2023.2185762
  • Elimam DM, Eldehna WM, Salem R, et al. Natural inspired ligustrazine-based SLC-0111 analogues as novel carbonic anhydrase inhibitors. Eur J Med Chem. 2022;228:114008. DOI:10.1016/j.ejmech.2021.114008
  • Elbadawi MM, Eldehna WM, Nocentini A, et al. Development of 4-((3-oxo-3-phenylpropyl)amino)benzenesulfonamide derivatives utilizing tail/dual-tail approaches as novel carbonic anhydrase inhibitors. Eur J Med Chem. 2022 5;238:114412. doi: 10.1016/j.ejmech.2022.114412
  • Oudah KH, Mahmoud WR, Awadallah FM, et al. Design and synthesis of some new benzoylthioureido benzenesulfonamide derivatives and their analogues as carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem. 2023;38(1):12–23. doi: 10.1080/14756366.2022.2132485
  • Liguori F, Carradori S, Ronca R, et al. Benzenesulfonamides with different rigidity-conferring linkers as carbonic anhydrase inhibitors: an insight into the antiproliferative effect n glioblastoma, pancreatic, and breast cancer cells. J Enzyme Inhib Med Chem. 2022;37(1):1857–1869. doi: 10.1080/14756366.2022.2091557
  • Al-Warhi T, Elbadawi MM, Bonardi A, et al. Design and synthesis of benzothiazole-based SLC-0111 analogues as new inhibitors for the cancer-associated carbonic anhydrase isoforms IX and XII. J Enzyme Inhib Med Chem. 2022;37(1):2635–2643. doi: 10.1080/14756366.2022.2124409
  • Bozdag M, Carta F, Ceruso M, et al. Discovery of 4-Hydroxy-3-(3-(phenylureido)benzenesulfonamides as SLC-0111 analogues for the treatment of hypoxic tumors overexpressing carbonic anhydrase IX. J Med Chem. 2018;61(14):6328–6338. doi: 10.1021/acs.jmedchem.8b00770
  • Mboge MY, Combs J, Singh S, et al. Inhibition of carbonic anhydrase using slc-149: support for a noncatalytic function of caix in breast cancer. J Med Chem. 2021;64(3):1713–1724. doi: 10.1021/acs.jmedchem.0c02077
  • Zhang Z Aryl sulfonamide compounds as carbonic anhydrase inhibitors and their therapeutic use. WO2017/004543, 2017.
  • Kumar A, Siwach K, Supuran CT, et al. A decade of tail-approach based design of selective as well as potent tumor associated carbonic anhydrase inhibitors. Bioorg Chem. 2022;126:105920. DOI:10.1016/j.bioorg.2022.105920
  • Kumar A, Siwach K, Rom T, et al. Tail-approach based design and synthesis of Arylthiazolylhydrazono-1,2,3-triazoles incorporating sulfanilamide and metanilamide as human carbonic anhydrase I, II, IV and IX inhibitors. Bioorg Chem. 2022;123:105764. DOI:10.1016/j.bioorg.2022.105764
  • Allam HA, Albakry ME, Mahmoud WR, et al. Effect of hydrophobic extension of aryl enaminones and pyrazole-linked compounds combined with sulphonamide, sulfaguanidine, or carboxylic acid functionalities on carbonic anhydrase inhibitory potency and selectivity. J Enzyme Inhib Med Chem. 2023;38(1):2201403. doi: 10.1080/14756366.2023.2201403
  • Ivanova JN, Nocentini A, Tars K, et al. Atropo/Tropo flexibility: a tool for design and synthesis of self-adaptable inhibitors of carbonic anhydrases and their antiproliferative effect. J Med Chem. 2023;66(8):5703–5718. doi: 10.1021/acs.jmedchem.3c00007
  • Metwally HM, Abdelrasheed Allam H, Baselious F, et al. Arylidine extensions of 3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-benzenesulfonamide derivatives: synthesis, computational simulations and biological evaluation as tumor-associated carbonic anhydrase inhibitors. Bioorg Chem. 2023;135:106492. DOI:10.1016/j.bioorg.2023.106492
  • Aboukhatwa SM, Sidhom PA, Angeli A, et al. Terminators or Guardians? design, synthesis, and cytotoxicity profiling of chalcone-sulfonamide hybrids. ACS Omega. 2023;8(8):7666–7683. doi: 10.1021/acsomega.2c07285
  • Krymov SK, Scherbakov AM, Dezhenkova LG, et al. Indoline-5-sulfonamides: a role of the core in inhibition of cancer-related carbonic anhydrases, antiproliferative activity and circumventing of multidrug resistance. Pharmaceuticals (Basel). 2022;15(12):1453. doi: 10.3390/ph15121453
  • El-Malah A, Taher ES, Angeli A, et al. Schiff bases as linker in the development of quinoline-sulfonamide hybrids as selective cancer-associated carbonic anhydrase isoforms IX/XII inhibitors: A new regioisomerism tactic. Bioorg Chem. 2023;131:106309. DOI:10.1016/j.bioorg.2022.106309
  • Vats L, Siwach K, Angeli A, et al. Tail approach synthesis of triazolylthiazolotriazole bearing benzenesulfonamides as carbonic anhydrase inhibitors capable of inducing apoptosis. Arch Pharm (Weinheim). 2023;356(2):e2200439. doi: 10.1002/ardp.202200439
  • Tawfik HO, Belal A, Abourehab MAS, et al. Dependence on linkers’ flexibility designed for benzenesulfonamides targeting discovery of novel hCA IX inhibitors as potent anticancer agents. J Enzyme Inhib Med Chem. 2022;37(1):2765–2785. doi: 10.1080/14756366.2022.2130285
  • Zain-Alabdeen AI, El-Moselhy TF, Sharafeldin N, et al. Synthesis and anticancer activity of new benzensulfonamides incorporating s-triazines as cyclic linkers for inhibition of carbonic anhydrase IX. Sci Rep. 2022;12(1):16756. doi: 10.1038/s41598-022-21024-7
  • Manzoor S, Angeli A, Zara S, et al. Development of benzene and benzothiazole-sulfonamide analogues as selective inhibitors of the tumor-associated carbonic anhydrase IX. Eur J Med Chem. 2022;243:114793. DOI:10.1016/j.ejmech.2022.114793
  • Thacker PS, Newaskar V, Angeli A, et al. Synthesis and biological evaluation of coumarin-thiazole hybrids as selective carbonic anhydrase IX and XII inhibitors. Arch Pharm (Weinheim). 2022;355(12):e2200232. doi: 10.1002/ardp.202200232
  • Abdel-Mohsen HT, Omar MA, Petreni A, et al. Novel 2-substituted thioquinazoline-benzenesulfonamide derivatives as carbonic anhydrase inhibitors with potential anticancer activity. Arch Pharm (Weinheim). 2022;355(12):e2200180. doi: 10.1002/ardp.202200180
  • Abdel-Mohsen HT, Petreni A, Supuran CT. Investigation of the carbonic anhydrase inhibitory activity of benzenesulfonamides incorporating substituted fused-pyrimidine tails. Arch Pharm (Weinheim). 2022;355(11):e2200274. doi: 10.1002/ardp.202200274
  • Yamali C, Sakagami H, Satoh K, et al. Investigation of carbonic anhydrase inhibitory effects and cytotoxicities of pyrazole-based hybrids carrying hydrazone and zinc-binding benzenesulfonamide pharmacophores. Bioorg Chem. 2022;127:105969. DOI:10.1016/j.bioorg.2022.105969
  • Arrighi G, Puerta A, Petrini A, et al. Squaramide-tethered sulfonamides and coumarins: synthesis, inhibition of tumor-associated cas ix and xii and docking simulations. Int J Mol Sci. 2022;23(14):7685. doi: 10.3390/ijms23147685
  • Ivanova J, Nocentini A, Domraceva I, et al. 5-aryl or hetero-aryl substituted thiophen-2-sulphonamide derivatives as carbonic acid anhydrase inhibitors, synthesis thereof and antiproliferative effects. LV15699. 2023.
  • Rössler SL, Grob NM, Buchwald SL, et al. Abiotic peptides as carriers of information for the encoding of small-molecule library synthesis. Science. 2023 Mar 3;379(6635):939–945. doi: 10.1126/science.adf1354
  • Nerella SG, Singh P, Thacker PS, et al. PET radiotracers and fluorescent probes for imaging human carbonic anhydrase IX and XII in hypoxic tumors. Bioorg Chem. 2023;133:106399. DOI:10.1016/j.bioorg.2023.106399
  • Rotermund A, Brandt S, Staege MS, et al. Differential CMS-related expression of cell surface carbonic anhydrases ix and xii in colorectal cancer models-implications for therapy. Int J Mol Sci. 2023;24(6):5797. doi: 10.3390/ijms24065797
  • Eloranta K, Pihlajoki M, Liljeström E, et al. SLC-0111, an inhibitor of carbonic anhydrase IX, attenuates hepatoblastoma cell viability and migration. Front Oncol. 2023;13:1118268.
  • Sarnella A, Ferrara Y, Albanese S, et al. Inhibition of bone marrow-mesenchymal stem cell-induced carbonic anhydrase ix potentiates chemotherapy efficacy in triple-negative breast cancer cells. Cells. 2023;12(2):298. doi: 10.3390/cells12020298
  • Yin L, Lu Y, Cao C, et al. CA9-related acidic microenvironment mediates cd8+ t cell related immunosuppression in pancreatic cancer. Front Oncol. 2022;11:832315. DOI:10.3389/fonc.2021.832315
  • Mussi S, Rezzola S, Chiodelli P, et al. Antiproliferative effects of sulphonamide carbonic anhydrase inhibitors C18, SLC-0111 and acetazolamide on bladder, glioblastoma and pancreatic cancer cell lines. J Enzyme Inhib Med Chem. 2022;37(1):280–286. doi: 10.1080/14756366.2021.2004592
  • Huo Z, Bilang R, Supuran CT, et al. Perfusion-Based bioreactor culture and isothermal microcalorimetry for preclinical drug testing with the carbonic anhydrase inhibitor slc-0111 in patient-derived neuroblastoma. Int J Mol Sci. 2022;23(6):3128. doi: 10.3390/ijms23063128
  • Sarnella A, Ferrara Y, Auletta L, et al. Inhibition of carbonic anhydrases IX/XII by SLC-0111 boosts cisplatin effects in hampering head and neck squamous carcinoma cell growth and invasion. J Exp Clin Cancer Res. 2022 Apr 2;41(1):122. doi: 10.1186/s13046-022-02345-x
  • Sufian MA, Zamanova S, Shabana AM, et al. Expression dynamics of ca ix epitope in cancer cells under intermittent hypoxia correlates with extracellular ph drop and cell killing by ureido-sulfonamide CA IX inhibitors. Int J Mol Sci. 2023;24(5):4595. doi: 10.3390/ijms24054595
  • Eldehna WM, El Hassab MA, Abdelshafi NA, et al. Development of potent nanosized carbonic anhydrase inhibitor for targeted therapy of hypoxic solid tumors. Int J Pharm. 2023;631:122537. DOI:10.1016/j.ijpharm.2022.122537
  • Baglini E, Ravichandran R, Berrino E, et al. Tetrahydroquinazole-based secondary sulphonamides as carbonic anhydrase inhibitors: synthesis, biological evaluation against isoforms I, II, IV, and IX, and computational studies. J Enzyme Inhib Med Chem. 2021;36(1):1874–1883. doi: 10.1080/14756366.2021.1956913
  • Salerno S, Amendola G, Angeli A, et al. Inhibition studies on carbonic anhydrase isoforms I, II, IV and IX with N-arylsubstituted secondary sulfonamides featuring a bicyclic tetrahydroindazole scaffold. Eur J Med Chem. 2021;220:113490. DOI:10.1016/j.ejmech.2021.113490
  • Abdoli M, Luca V, Capasso C, et al. Investigation of carbonic anhydrase inhibitory potency of (Z/E)-alkyl N’-benzyl-N-(arylsulfonyl)-carbamimidothioates. Future Med Chem. 2023;15(7):615–627. doi: 10.4155/fmc-2022-0287
  • Abdoli M, De Luca V, Capasso C, et al. Inhibition studies on carbonic anhydrase isoforms I, II, IX, and XII with a series of sulfaguanidines. ChemMedchem. 2023;18(6):e202200658. doi: 10.1002/cmdc.202200658
  • Abdelgawad MA, Bukhari SNA, Musa A, et al. New sulfamethoxazole derivatives as selective carbonic anhydrase ix and xii inhibitors: design, synthesis, cytotoxic activity and molecular modeling. Pharmaceuticals (Basel). 2022;15(9):1134. doi: 10.3390/ph15091134
  • Briganti F, Pierattelli R, Scozzafava A, et al. Carbonic anhydrase inhibitors. Part 37. Novel classes of carbonic anhydrase inhibitors and their interaction with the native and cobalt-substituted enzyme: kinetic and spectroscopic investigations. Eur J Med Chem. 1996;31(12):1001–1010. doi: 10.1016/S0223-5234(97)86179-X
  • Elsayed ZM, Almahli H, Nocentini A, et al. Development of novel anilinoquinazoline-based carboxylic acids as non-classical carbonic anhydrase IX and XII inhibitors. J Enzyme Inhib Med Chem. 2023;38(1):2191163. doi: 10.1080/14756366.2023.2191163
  • Pontecorvi V, Mori M, Picarazzi F, et al. Novel insights on human carbonic anhydrase inhibitors based on coumalic acid: design, synthesis, molecular modeling investigation, and biological studies. Int J Mol Sci. 2022;23(14):7950. doi: 10.3390/ijms23147950
  • Langella E, D’Ambrosio K, D’Ascenzio M, et al. A combined crystallographic and theoretical study explains the capability of carboxylic acids to adopt multiple binding modes in the active site of carbonic anhydrases. Chemistry. 2016;22(1):97–100. doi: 10.1002/chem.201503748
  • De Simone G, Supuran CT. (In)organic anions as carbonic anhydrase inhibitors. J Inorg Biochem. 2012;111:117–129. doi: 10.1016/j.jinorgbio.2011.11.017
  • Maresca A, Temperini C, Vu H, et al. Non-zinc mediated inhibition of carbonic anhydrases: coumarins are a new class of suicide inhibitors. J Am Chem Soc. 2009;131(8):3057–3062. doi: 10.1021/ja809683v
  • D’Ambrosio K, Carradori S, Monti SM, et al. Out of the active site binding pocket for carbonic anhydrase inhibitors. Chem Commun (Camb). 2015;51(2):302–305. doi: 10.1039/C4CC07320G
  • Astrain-Redin N, Paoletti N, Plano D, et al. Selenium-analogs based on natural sources as cancer-associated carbonic anhydrase isoforms IX and XII inhibitors. J Enzyme Inhib Med Chem. 2023;38(1):2191165. doi: 10.1080/14756366.2023.2191165
  • Angeli A, Tanini D, Nocentini A, et al. Selenols: a new class of carbonic anhydrase inhibitors. Chem Commun (Camb). 2019;55(5):648–651. doi: 10.1039/C8CC08562E
  • Tanini D, Capperucci A, Ferraroni M, et al. Direct and straightforward access to substituted alkyl selenols as novel carbonic anhydrase inhibitors. Eur J Med Chem. 2020;185:111811. DOI:10.1016/j.ejmech.2019.111811
  • Petreni A, Iacobescu A, Simionescu N, et al. Carbonic anhydrase inhibitors bearing organotelluride moieties as novel agents for antitumor therapy. Eur J Med Chem. 2022;244:114811. DOI:10.1016/j.ejmech.2022.114811
  • Gumus A, Bozdag M, Akdemir A, et al. Thiosemicarbazide-substituted coumarins as selective inhibitors of the tumor associated human carbonic anhydrases IX and XII. Molecules. 2022;27(14):4610. doi: 10.3390/molecules27144610
  • Zengin Kurt B, Celebi G, Ozturk Civelek D, et al. Tail-approach-based design and synthesis of coumarin-monoterpenes as carbonic anhydrase inhibitors and anticancer agents. ACS Omega. 2023;8(6):5787–5807. doi: 10.1021/acsomega.2c07459
  • Mahammad Ghouse S, Bahatam K, Angeli A, et al. Synthesis and biological evaluation of new 3-substituted coumarin derivatives as selective inhibitors of human carbonic anhydrase IX and XII. J Enzyme Inhib Med Chem. 2023;38(1):2185760. doi: 10.1080/14756366.2023.2185760
  • Sethi A, Munagalasetty S, Arifuddin M, et al. Coumarin and piperazine conjugates as selective inhibitors of the tumor-associated carbonic anhydrase IX and XII isoforms. Anticancer Agents Med Chem. 2023;23(10):1184–1191. doi: 10.2174/1871520623666230202123535
  • Ibrahim HS, Abdelrahman MA, Nocentini A, et al. Insights into the effect of elaborating coumarin-based aryl enaminones with sulfonamide or carboxylic acid functionality on carbonic anhydrase inhibitory potency and selectivity. Bioorg Chem. 2022;126:105888. DOI:10.1016/j.bioorg.2022.105888
  • Chu N, Wang Y, Jia H, et al. Design, synthesis and biological evaluation of new carbohydrate-based coumarin derivatives as selective carbonic anhydrase ix inhibitors via “click. React Molecules. 2022;27(17):5464. doi: 10.3390/molecules27175464
  • El-Damasy AK, Kim HJ, Nocentini A, et al. Discovery of new 6-ureido/amidocoumarins as highly potent and selective inhibitors for the tumour-relevant carbonic anhydrases IX and XII. J Enzyme Inhib Med Chem. 2023;38(1):2154603. doi: 10.1080/14756366.2022.2154603
  • Ivanova J, Abdoli M, Nocentini A, et al. Derivatives of 4-methyl-1,2,3-benzoxathiazine 2,2-dioxide as selective inhibitors of human carbonic anhydrases IX and XII over the cytosolic isoforms I and II. J Enzyme Inhib Med Chem. 2023;38(1):2170370. doi: 10.1080/14756366.2023.2170370
  • Ivanova J, Abdoli M, Nocentini A, et al. 1,2,3-2, benzoxathiazine-2-dioxides - effective inhibitors of human carbonic anhydrases. J Enzyme Inhib Med Chem. 2023;38(1):225–238. doi: 10.1080/14756366.2022.2142787
  • Pustenko A, Balašova A, Nocentini A, et al. 3H-1,2-benzoxaphosphepine 2-oxides as selective inhibitors of carbonic anhydrase IX and XII. J Enzyme Inhib Med Chem. 2023;38(1):216–224. doi: 10.1080/14756366.2022.2143496
  • Grandane A, Domraceva I, Supuran CT, et al. Derivatives of oxathiino[6,5-B]pyridine 2,2-dioxide as inhibitors of carbonic anhydrases, their synthesis and anti-cancer effect. LV15498. 2020.
  • Giovannuzzi S, Capasso C, Nocentini A, et al. Continued structural exploration of sulfocoumarin as selective inhibitor of tumor-associated human carbonic anhydrases ix and XII. Molecules. 2022;27(13):4076. doi: 10.3390/molecules27134076
  • Angeli A, Supuran CT. Click chemistry approaches for developing carbonic anhydrase inhibitors and their applications. J Enzyme Inhib Med Chem. 2023;38(1):2166503. doi: 10.1080/14756366.2023.2166503
  • Tars K, Vullo D, Kazaks A, et al. Sulfocoumarins (1,2-benzoxathiine-2,2-dioxides): a class of potent and isoform-selective inhibitors of tumor-associated carbonic anhydrases. J Med Chem. 2013;56(1):293–300. doi: 10.1021/jm301625s
  • Huwaimel BI, Jonnalagadda SK, Jonnalagadda S, et al. Selective carbonic anhydrase IX and XII inhibitors based around a functionalized coumarin scaffold. Drug Dev Res. 2023;84(4):681–702. in press. doi: 10.1002/ddr.22049
  • Supuran CT. Multitargeting approaches involving carbonic anhydrase inhibitors: hybrid drugs against a variety of disorders. J Enzyme Inhib Med Chem. 2021;36(1):1702–1714. doi: 10.1080/14756366.2021.1945049
  • Tinivella A, Nwachukwu JC, Angeli A, et al. Design, synthesis, biological evaluation and crystal structure determination of dual modulators of carbonic anhydrases and estrogen receptors. Eur J Med Chem. 2023;246:115011. DOI:10.1016/j.ejmech.2022.115011
  • Denner TC, Heise N, Zacharias J, et al. Small structural differences govern the carbonic anhydrase ii inhibition activity of cytotoxic triterpene acetazolamide conjugates. Molecules. 2023;28(3):1009. doi: 10.3390/molecules28031009
  • Braconi L, Teodori E, Riganti C, et al. New Dual P-Glycoprotein (P-gp) and Human Carbonic Anhydrase XII (hCA XII) Inhibitors as Multidrug Resistance (MDR) Reversers in Cancer Cells. J Med Chem. 2022;65(21):14655–14672. doi: 10.1021/acs.jmedchem.2c01175
  • Agamennone M, Fantacuzzi M, Carradori S, et al. Coumarin-based dual inhibitors of human carbonic anhydrases and monoamine oxidases featuring amino acyl and (pseudo)-dipeptidyl appendages: in vitro and computational studies. Molecules. 2022;27(22):7884. doi: 10.3390/molecules27227884
  • Bonardi A, Micheli L, Di Cesare Mannelli L, et al. Development of hydrogen sulfide-releasing carbonic anhydrases ix- and xii-selective inhibitors with enhanced antihyperalgesic action in a rat model of arthritis. J Med Chem. 2022;65(19):13143–13157. doi: 10.1021/acs.jmedchem.2c00982
  • Giustarini D, Tazzari V, Bassanini I, et al. The new H 2 S-releasing compound ACS94 exerts protective effects through the modulation of thiol homoeostasis. J Enzyme Inhib Med Chem. 2018;33(1):1392–1404. doi: 10.1080/14756366.2018.1509211
  • Zhu Y, Archer WR, Morales KF, et al. Enzyme-triggered chemodynamic therapy via a peptide-h 2 s donor conjugate with complexed fe 2+. Angew Chem Int Ed Engl. 2023;62(22):e202302303. in press. doi: 10.1002/anie.202302303
  • Shaldam MA, Almahli H, Angeli A, et al. Discovery of sulfonamide-tethered isatin derivatives as novel anticancer agents and VEGFR-2 inhibitors. J Enzyme Inhib Med Chem. 2023 Dec;38(1):2203389. doi: 10.1080/14756366.2023.2203389
  • Boyd NH, Walker K, Fried J, et al. Addition of carbonic anhydrase 9 inhibitor SLC-0111 to temozolomide treatment delays glioblastoma growth in vivo. JCI Insight. 2017;2(24):e92928. doi: 10.1172/jci.insight.92928
  • Kim JH, Park S, Jung E, et al. A dual-action niclosamide-based prodrug that targets cancer stem cells and inhibits TNBC metastasis. Proc Natl Acad Sci U S A. 2023;120(21):e2304081120. doi: 10.1073/pnas.2304081120
  • Giovannuzzi S, Bonardi A, Gratteri P, et al. Discovery of the first-in-class potent and isoform-selective human carbonic anhydrase III inhibitors. J Enzyme Inhib Med Chem. 2023;38(1):2202360. doi: 10.1080/14756366.2023.2202360
  • Nocentini A, Angeli A, Carta F, et al. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. J Enzyme Inhib Med Chem. 2021;36(1):561–580. doi: 10.1080/14756366.2021.1882453
  • Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett. 2023;93:129411. doi: 10.1016/j.bmcl.2023.129411
  • Zhao Y, Li ZX, Zhu YJ, et al. Single-cell transcriptome analysis uncovers intratumoral heterogeneity and underlying mechanisms for drug resistance in hepatobiliary tumor organoids. Adv Sci. 2021;8(11):e2003897. doi: 10.1002/advs.202003897
  • Na JC, Kim JH, Kim SY, et al. Establishment of patient-derived three-dimensional organoid culture in renal cell carcinoma. Investig Clin Urol. 2020;61(2):216–223. doi: 10.4111/icu.2020.61.2.216
  • Peerzada MN, Hamel E, Bai R, et al. Deciphering the key heterocyclic scaffolds in targeting microtubules, kinases and carbonic anhydrases for cancer drug development. Pharmacol Ther. 2021;225:107860. DOI:10.1016/j.pharmthera.2021.107860
  • Elsawi AE, Elbadawi MM, Nocentini A, et al. 1, 5-diaryl-1,2,4-triazole ureas as new slc-0111 analogues endowed with dual carbonic anhydrase and vegfr-2 inhibitory activities. J Med Chem. 2023. in press. doi: 10.1021/acs.jmedchem.3c00721
  • Ismail RSM, El Kerdawy AM, Soliman DH, et al. Discovery of a new potent oxindole multi-kinase inhibitor among a series of designed 3-alkenyl-oxindoles with ancillary carbonic anhydrase inhibitory activity as antiproliferative agents. BMC Chem. 2023;17(1):81. doi: 10.1186/s13065-023-00994-3
  • Abbate F, Winum JY, Potter BV, et al. Carbonic anhydrase inhibitors: X-ray crystallographic structure of the adduct of human isozyme II with EMATE, a dual inhibitor of carbonic anhydrases and steroid sulfatase. Bioorg Med Chem Lett. 2004;14(1):231–234. doi: 10.1016/j.bmcl.2003.09.064

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.