96
Views
0
CrossRef citations to date
0
Altmetric
Perspective

A patent perspective of antiangiogenic agents

, , , , & ORCID Icon
Pages 821-840 | Received 26 Oct 2023, Accepted 11 Dec 2023, Published online: 18 Dec 2023

References

  • Udan RS, Culver JC, Dickinson ME. Understanding vascular development: Understanding vascular development. WIRES Dev Biol. 2013;2(3):327–346.
  • Karamysheva AF. Mechanisms of angiogenesis. Biochemistry (Mosc). 2008;73(7):751–762. doi: 10.1134/S0006297908070031
  • Iyer S, Acharya KR. Role of placenta growth factor in cardiovascular health. Trends Cardiovasc Med. 2002;12(3):128–134. doi: 10.1016/S1050-1738(01)00164-5
  • Ma Q, Reiter RJ, Chen Y. Role of melatonin in controlling angiogenesis under physiological and pathological conditions. Angiogenesis. 2020;23(2):91–104.
  • Smolen JS, Aletaha D, Koeller M, et al. New therapies for treatment of rheumatoid arthritis. Lancet. 2007;370(9602):1861–1874. doi: 10.1016/S0140-6736(07)60784-3.
  • Caldwell RB, Bartoli M, Behzadian MA, et al. Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Diabetes Metab Res Rev. 2003;19(6):442–455. doi: 10.1002/dmrr.415
  • Creamer D, Jaggar R, Allen M, et al. Overexpression of the angiogenic factor platelet-derived endothelial cell growth factor/thymidine phosphorylase in psoriatic epidermis. Br J Dermatol. 1997;137(6):851–855. doi: 10.1046/j.1365-2133.1997.19772089.x
  • Costa C, Incio J, Soares R. Angiogenesis and chronic inflammation: cause or consequence? Angiogenesis. 2007;10(3):149–166. doi: 10.1007/s10456-007-9074-0
  • Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353–364.
  • Cross MJ, Claesson-Welsh L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. 2001;22(4):201–207. doi: 10.1016/S0165-6147(00)01676-X
  • Vimalraj S. A concise review of VEGF, PDGF, FGF, notch, angiopoietin, and HGF signalling in tumor angiogenesis with a focus on alternative approaches and future directions. Int j biol macromol. 2022;221:1428–1438.
  • Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3(6):401–410. doi: 10.1038/nrc1093
  • Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis. 2023;26(3):313–347.
  • Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249–257. doi: 10.1038/35025220
  • Conway EM, Collen D, Carmeliet P. Molecular mechanisms of blood vessel growth. Cardiovasc Res. 2001;49(3):507–521. doi: 10.1016/S0008-6363(00)00281-9
  • Griffioen AW, Dudley AC. The rising impact of angiogenesis research. Angiogenesis. 2022;25(4):435–437. doi: 10.1007/s10456-022-09849-2
  • Sherwood LM, Parris EE, Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–1186. doi: 10.1056/NEJM197111182852108
  • Kerbel RS. Tumor Angiogenesis. N Engl J Med. 2008;358(19):2039–2049. doi: 10.1056/NEJMra0706596
  • Ramjiawan RR, Griffioen AW, Duda DG. Anti-angiogenesis for cancer revisited: is there a role for combinations with immunotherapy? Angiogenesis. 2017;20(2):185–204. doi: 10.1007/s10456-017-9552-y
  • Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 2007;6(4):273–286. doi: 10.1038/nrd2115
  • Gasparini G, Longo R, Toi M, et al. Angiogenic inhibitors: a new therapeutic strategy in oncology. Nat Rev Clin Oncol. 2005;2(11):562–577. doi: 10.1038/ncponc0342
  • Kerr DJ. Targeting angiogenesis in cancer: clinical development of bevacizumab. Nat Rev Clin Oncol. 2004;1(1):39–43. doi: 10.1038/ncponc0026
  • Wilke H, Muro K, Van Cutsem E, et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol. 2014;15(11):1224–1235. doi: 10.1016/S1470-2045(14)70420-6
  • Singh SR, Dogra A, Stewart M, et al. Intravitreal Ziv-Aflibercept: Clinical Effects and Economic Impact. Asia-Pac J Ophthalmol. 2017;6(6):561. doi: 10.22608/APO.2017263
  • Li K, Shi M, Qin S. Current status and study progress of recombinant human endostatin in cancer treatment. Oncol Ther. 2018;6(1):21–43. doi: 10.1007/s40487-017-0055-1
  • Yi M, Jiao D, Qin S, et al. Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment. Mol Cancer. 2019;18(1):60. doi: 10.1186/s12943-019-0974-6
  • Espana-Serrano L, Chougule MB. Enhanced anticancer activity of PF-04691502, a dual PI3K/mTOR Inhibitor, in combination with VEGF siRNA against non–small-cell lung cancer. Mol Ther Nucleic Acids. 2016;5:e384. doi: 10.1038/mtna.2016.90
  • Atkins MB, Lee SJ, Chmielowski B, et al. Combination dabrafenib and trametinib versus combination nivolumab and ipilimumab for patients with advanced BRAF-Mutant melanoma: the DREAMseq trial—ECOG-ACRIN EA6134. JCO. 2023;41(2):186–197. doi: 10.1200/JCO.22.01763
  • Larionova I, Kazakova E, Gerashchenko T, et al. New angiogenic regulators produced by TAMs: perspective for targeting tumor angiogenesis. Cancers (Basel). 2021;13(13):3253. doi: 10.3390/cancers13133253
  • Kurihara H, Mada J, Tokihiro T. Angiogenesis: dynamics of endothelial cells in sprouting and bifurcation. In: Tokihiro T , editors. et al. Mathematical modeling for genes to collective cell dynamics. Singapore: Springer Nature; 2021. p. 25–83. doi: 10.1007/978-981-16-7132-6_2
  • Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer. 2002;2(10):795–803. doi: 10.1038/nrc909
  • Leung DW, Cachianes G, Kuang W-J, et al. Vascular endothelial growth factor is a secreted angiogenic Mitogen. Science. 1989;246(4935):1306–1309. doi: 10.1126/science.2479986
  • Ferrara N, Gerber H-P, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669–676. doi: 10.1038/nm0603-669
  • Braile M, Marcella S, Cristinziano L, et al. VEGF-A in cardiomyocytes and heart diseases. Int J Mol Sci. 2020;21(15):5294. doi: 10.3390/ijms21155294
  • Compernolle V, Brusselmans K, Acker T, et al. Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med. 2002;8(7):702–710. doi: 10.1038/nm721
  • Huang H. Pericyte-endothelial interactions in the retinal microvasculature. Int J Mol Sci. 2020;21(19):7413. doi: 10.3390/ijms21197413
  • Shi J, Yang Y, Cheng A, et al. Metabolism of vascular smooth muscle cells in vascular diseases. Am J Physiol Heart Circ Physiol. 2020;319(3):H613–H631. doi: 10.1152/ajpheart.00220.2020
  • Holmqvist K, Cross MJ, Rolny C, et al. The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration *. J Biol Chem. 2004;279(21):22267–22275. doi: 10.1074/jbc.M312729200
  • Sun Z, Li X, Massena S, et al. VEGFR2 induces c-src signaling and vascular permeability in vivo via the adaptor protein TSAd. J Exp Med. 2012;209(7):1363–1377. doi: 10.1084/jem.20111343
  • Abedi H, Zachary I. Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and Paxillin in endothelial cells*. J Biol Chem. 1997;272(24):15442–15451. doi: 10.1074/jbc.272.24.15442
  • Takahashi T, Yamaguchi S, Chida K, et al. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-γ and DNA synthesis in vascular endothelial cells. EMBO J. 2001;20(11):2768–2778. doi: 10.1093/emboj/20.11.2768
  • Holderfield MT, Hughes CCW. Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-β in vascular morphogenesis. Circ Res. 2008;102(6):637–652. doi: 10.1161/CIRCRESAHA.107.167171
  • Nikolinakos P, Heymach JV. The tyrosine kinase inhibitor cediranib for non-small cell lung cancer and other thoracic malignancies. J Thorac Oncol. 2008;3(6):S131–S134. doi: 10.1097/JTO.0b013e318174e910
  • Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9(1):28–39. doi: 10.1038/nrc2559
  • Jiao Q, Bi L, Ren Y, et al. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol Cancer. 2018;17(1):36. doi: 10.1186/s12943-018-0801-5
  • Nanjing Edchem Pharmaceutical Technology Co., spiro-substituted compounds as angiogenesis inhibitor. CN101809012 (2008).
  • Chia Tai Tianqing Pharmaceutical Group Co., Ltd. Quinoline derivative roe treating non small cell lung cancer. WO20160911659 (2016)
  • Chia Tai Tianqing Pharmaceutical Group Co., Ltd. Quinoline derivative roe treating gastric cancer. WO2017177962 (2017)
  • Shanghai Hengrui Pharmaceutical Co., Ltd. Quinoline or quinazoline derivatives, methods for their preparation and their application in medicine. CN103382206 (2013)
  • Jiangsu Vcare PharmaTech Co., Ltd. VEGFR inhibitor, methods for their preparation and their application in medicine. CN112010864 (2020)
  • Jiangsu Vcare PharmaTech Co., Ltd. VEGFR inhibitor methods for their preparation and their application in medicine. (2019)
  • Dietrich J, Wang D, Batchelor TT. Cediranib: profile of a novel anti-angiogenic agent in patients with glioblastoma. Expert Opin Investig Drugs. 2009;18(10):1549–1557. doi: 10.1517/13543780903183528
  • Momeny M, Sankanian G, Hamzehlou S, et al. Cediranib, an inhibitor of vascular endothelial growth factor receptor kinases, inhibits proliferation and invasion of prostate adenocarcinoma cells. Eur J Pharmacol. 2020;882:173298. doi: 10.1016/j.ejphar.2020.173298
  • Dias MP, Moser SC, Ganesan S, et al. Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat Rev Clin Oncol. 2021;18(12):773–791. doi: 10.1038/s41571-021-00532-x
  • Beijing Kangchen Pharmaceutical Co. Angiogenesis inhibitors, methods of preparation and applications thereof. CN112912373 (2021)
  • Ivy SP, Liu JF, Lee J-M, et al. Cediranib, a pan-VEGFR inhibitor, and olaparib, a PARP inhibitor, in combination therapy for high grade serous ovarian cancer. Expert Opin Investig Drugs. 2016;25(5):597–611. doi: 10.1517/13543784.2016.1156857
  • Liu JF, Brady MF, Matulonis UA, et al. Olaparib with or without cediranib versus platinum-based chemotherapy in recurrent platinum-sensitive ovarian cancer (NRG-GY004): a randomized, open-label, phase III trial. JCO. 2022;40(19):2138–2147. doi: 10.1200/JCO.21.02011
  • Medshine Discovery Inc. Deuterated Thienopyridine Compound. WO2021139717. 2021.
  • Patwardhan PP, Ivy KS, Musi E, et al. Significant blockade of multiple receptor tyrosine kinases by MGCD516 (sitravatinib), a novel small molecule inhibitor, shows potent anti-tumor activity in preclinical models of sarcoma. Oncotarget. 2015;7(4):4093–4109. doi: 10.18632/oncotarget.6547
  • Du W, Huang H, Sorrelle N, et al. Sitravatinib potentiates immune checkpoint blockade in refractory cancer models. JCI Insight. 2018;3(21):e124184. doi: 10.1172/jci.insight.124184
  • Rizk OH, Teleb M, Abu-Serie MM, et al. Dual VEGFR-2/PIM-1 kinase inhibition towards surmounting the resistance to antiangiogenic agents via hybrid pyridine and thienopyridine-based scaffolds: design, synthesis and biological evaluation. Bioorg Chem. 2019;92:103189. doi: 10.1016/j.bioorg.2019.103189
  • Qingdao University of Science and Technology. Vascular Endothelial Growth Factor Receptor 2 Inhibitor And Preparation And Application Thereof. CN115463119 (2022).
  • SINOPSEE THERAPEUTICS. Compounds for treatment of cancer. WO2020263186 (2020).
  • André F, Arnedos M, Baras AS, et al. AACR project GENIE: powering precision medicine through an international consortium. Cancer Discov. 2017;7(8):818–831. doi: 10.1158/2159-8290.CD-17-0151
  • Huang H, Chen Q, Ku X, et al. A series of α-heterocyclic Carboxaldehyde thiosemicarbazones inhibit Topoisomerase IIα Catalytic activity. J Med Chem. 2010;53(8):3048–3064. doi: 10.1021/jm9014394
  • Li S, Khan MH, Wang X, et al. Synthesis of a series of novel in(III) 2,6-diacetylpyridine bis(thiosemicarbazide) complexes: structure, anticancer function and mechanism. Dalton Trans. 2020;49(47):17207–17220. doi: 10.1039/D0DT02266G
  • UNIV GUANGXI NORMAL. A 2-benzoylpyridine acetylthiourea as a ligand for a platinum complex and its synthesis method and application. CN112079877 (2020)
  • Zhang Z, Zhang J, Yang T, et al. Developing an anticancer platinum(II) compound based on the uniqueness of human serum albumin. J Med Chem. 2023;66(8):5669–5684. doi: 10.1021/acs.jmedchem.3c00001
  • Wu J, Yang T, Wang X, et al. Development of a multi-target anticancer Sn(II) pyridine-2-carboxaldehyde thiosemicarbazone complex. Dalton Trans. 2021;50(31):10909–10921. doi: 10.1039/D1DT01272J
  • Carcelli M, Tegoni M, Bartoli J, et al. In vitro and in vivo anticancer activity of tridentate thiosemicarbazone copper complexes: Unravelling an unexplored pharmacological target. Eur J Med Chem. 2020;194:112266. doi: 10.1016/j.ejmech.2020.112266
  • NIV YONSEI IND ACADEMIC COOP FOUND. Boganzen derivatives for inhibiting angiogenesis and pharmaceutical components using them as active components. KR2023001481 (2023)
  • Kim Y, Sugihara Y, Kim TY, et al. Identification and validation of VEGFR2 kinase as a target of voacangine by a systematic combination of DARTS and MSI. Biomolecules. 2020;10(4):508. doi: 10.3390/biom10040508
  • Kim Y, Jung HJ, Kwon HJ. A natural small molecule voacangine inhibits angiogenesis both in vitro and in vivo. Biochem Biophys Res Commun. 2012;417(1):330–334. doi: 10.1016/j.bbrc.2011.11.109
  • Sin N, Meng L, Wang MQW, et al. The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. Proc Natl Acad Sci, USA. 1997;94(12):6099–6103. doi: 10.1073/pnas.94.12.6099
  • Bernier SG, Taghizadeh N, Thompson CD, et al. Methionine aminopeptidases type I and type II are essential to control cell proliferation. J Cell Biochem. 2005;95(6):1191–1203. doi: 10.1002/jcb.20493
  • Esa R, Steinberg E, Dror D, et al. The role of Methionine aminopeptidase 2 in Lymphangiogenesis. Int J Mol Sci. 2020;21(14):5148. doi: 10.3390/ijms21145148
  • Griffith EC, Su Z, Niwayama S, et al. Molecular recognition of angiogenesis inhibitors fumagillin and ovalicin by methionine aminopeptidase 2. Proc Natl Acad Sci, USA. 1998;95(26):15183–15188. doi: 10.1073/pnas.95.26.15183
  • Ingber D, Fujita T, Kishimoto S, et al. Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature. 1990;348(6301):555–557. doi: 10.1038/348555a0
  • Esa R, Steinberg E, Dagan A, et al. Newly synthesized methionine aminopeptidase 2 inhibitor hinders tumor growth. Drug Deliv Transl Res. 2023;13(5):1170–1182. doi: 10.1007/s13346-022-01187-6
  • Yissum Research Development Company of the Hebrew University of Jerusalem Ltd. Metap2 inhibitors and uses thereof. WO2023156996 (2023)
  • Štimac A, Šekutor M, Mlinarić-Majerski K, et al. Adamantane in drug delivery systems and surface recognition. Molecules. 2017;22(2):297. doi: 10.3390/molecules22020297
  • Wanka L, Iqbal K, Schreiner PR. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev. 2013;113(5):3516–3604. doi: 10.1021/cr100264t
  • Merck & Co. SRPK Inhibitors. WO2023006860 (2023).
  • Gammons MV, Lucas R, Dean R, et al. Targeting SRPK1 to control VEGF-mediated tumour angiogenesis in metastatic melanoma. Br J Cancer. 2014;111(3):477–485. doi: 10.1038/bjc.2014.342
  • Batson J, Toop HD, Redondo C, et al. Development of potent, selective SRPK1 inhibitors as potential topical therapeutics for neovascular eye disease. ACS Chem Biol. 2017;12(3):825–832. doi: 10.1021/acschembio.6b01048
  • Hatcher JM, Wu G, Zeng C, et al. SRPKIN-1: a covalent SRPK1/2 inhibitor that potently converts VEGF from pro-angiogenic to anti-angiogenic Isoform. Cell Chem Biol. 2018;25(4):460–470.e6. doi: 10.1016/j.chembiol.2018.01.013
  • Nowak DG, Amin EM, Rennel ES, et al. Regulation of vascular endothelial growth factor (VEGF) splicing from pro-angiogenic to anti-angiogenic isoforms: a NOVEL THERAPEUTIC STRATEGY for ANGIOGENESIS*. J Biol Chem. 2010;285(8):5532–5540. doi: 10.1074/jbc.M109.074930
  • Amin EM, Oltean S, Hua J, et al. WT1 mutants reveal SRPK1 to be a downstream angiogenesis target by altering VEGF splicing. Cancer Cell. 2011;20(6):768–780. doi: 10.1016/j.ccr.2011.10.016
  • Kabi AK, Sravani S, Gujjarappa R, et al. An overview on biological activity of benzimidazole derivatives. In: Swain Beditor. Nanostructured biomaterials: basic structures and applications. Singapore: Springer; 2022. p. 351–378.
  • Dana-Farber cancer institute. Potent and selective covalent inhibitors of serine-arginine protein kinase (SRPK) 1 and SRPK2 and their uses thereof. (WO2022076409) (2022)
  • Dana-Farber cancer institute. Compounds and compositions for intracellular delivery of therapeutic agents. ( WO2017049245) (2017)
  • EXONATE LIMITED. 1-methyl-1H-pyrazol-3-yl derivatives for the treatment of neovascular diseases. WO2022013555 (2022)
  • Hong C-L, Yu I-S, Pai C-H, et al. CD248 regulates wnt signaling in pericytes to promote angiogenesis and tumor growth in lung cancer. Cancer Res. 2022;82(20):3734–3750. doi: 10.1158/0008-5472.CAN-22-1695
  • National Taiwan University. Isoquinolin-3-yl carboxamide and its preparation and use. US20220332698 (2022)
  • Nagai M, Noguchi R, Takahashi D, et al. Fasting-refeeding impacts immune cell dynamics and mucosal immune responses. Cell. 2019;178(5):1072–1087.e14. doi: 10.1016/j.cell.2019.07.047
  • Jiangsu Kanion Pharmaceutical Co.ltd. Benzovisnoids and their intermediates, preparation methods and applications. WO2021121420 (2021)
  • Hla T, Maciag T. An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. J Biol Chem. 1990;265(16):9308–9313. doi: 10.1016/S0021-9258(19)38849-0
  • Liu S, Ni C, Zhang D, et al. S1PR1 regulates the switch of two angiogenic modes by VE-cadherin phosphorylation in breast cancer. Cell Death Dis. 2019;10(3):200. doi: 10.1038/s41419-019-1411-x
  • Zheng Z, Lei C, Liu H, et al. A ROS-Responsive liposomal composite hydrogel integrating improved mitochondrial function and pro-angiogenesis for efficient treatment of myocardial infarction. Adv Healthc Mater. 2022;11(19):e2200990. doi: 10.1002/adhm.202200990
  • Balaji Ragunathrao VA, Anwar M, Akhter MZ, et al. Sphingosine-1-phosphate receptor 1 activity promotes tumor growth by amplifying VEGF-VEGFR2 angiogenic signaling. Cell Rep. 2019;29(11):3472–3487.e4. doi: 10.1016/j.celrep.2019.11.036
  • Wang X, Qiu Z, Dong W, et al. S1PR1 induces metabolic reprogramming of ceramide in vascular endothelial cells, affecting hepatocellular carcinoma angiogenesis and progression. Cell Death Dis. 2022;13(9):1–15. doi: 10.1038/s41419-022-05210-z
  • Stamford A. Small molecule inhibitors of the S1p2 receptor and their uses. WO2021026479(2021)
  • Keating GM. Bevacizumab: a review of its use in advanced cancer. Drugs. 2014;74(16):1891–1925. doi: 10.1007/s40265-014-0302-9
  • Casanovas O. Cancer: limitations of therapies exposed. Nature. 2012;484(7392):44–46.
  • Van der Veldt AAM, Lubberink M, Bahce I, et al. Rapid decrease in delivery of chemotherapy to tumors after anti-VEGF therapy: implications for scheduling of anti-angiogenic drugs. Cancer Cell. 2012;21(1):82–91. doi: 10.1016/j.ccr.2011.11.023
  • Conley SJ, Gheordunescu E, Kakarala P, et al. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci U S A. 2012;109(8):2784–2789. doi: 10.1073/pnas.1018866109
  • Eelen G, de Zeeuw P, Treps L, et al. Endothelial cell metabolism. Physiol Rev. 2018;98(1):3–58. doi: 10.1152/physrev.00001.2017
  • Li X, Carmeliet P. Targeting angiogenic metabolism in disease. Science. 2018;359(6382):1335–1336. doi: 10.1126/science.aar5557
  • Eelen G, Dubois C, Cantelmo AR, et al. Role of glutamine synthetase in angiogenesis beyond glutamine synthesis. Nature. 2018;561(7721):63–69. doi: 10.1038/s41586-018-0466-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.