98
Views
0
CrossRef citations to date
0
Altmetric
Review

The patent review of the biological activity of tropane containing compounds

, &
Pages 875-899 | Received 18 Nov 2023, Accepted 21 Dec 2023, Published online: 02 Jan 2024

References

  • Al-Hussain SA, Farghaly TA, Ibrahim MH, et al. The anti-breast cancer activity of indeno[1,2-b]pyridin-5-one and their hydrazonal precursors endowed with anti-CDK-2 enzyme activity. J Mol Struct. 2024;1295:136692. doi: 10.1016/j.molstruc.2023.136692
  • Farghaly TA, Abbas EMH, Al‐Sheikh MA, et al. Synthesis of tricyclic and tetracyclic benzo[6,7]cycloheptane derivatives linked morpholine moiety as CDK2 inhibitors. Drug Dev Res. 2023;84:1127–1141. doi: 10.1002/ddr.22074
  • Song Y, Zhan P, Liu X. Heterocycle-thioacetic acid motif: a privileged molecular scaffold with potent, broad-ranging pharmacological activities. Curr Pharm Des. 2013;19(40):7141–7154. doi: 10.2174/13816128113199990505
  • Song Y, Zhan P, Zhang Q, et al. Privileged scaffolds or promiscuous binders: a glance of pyrrolo[2,1-f][1,2,4]triazines and related bridgehead nitrogen heterocycles in medicinal chemistry. Curr Pharm Des. 2013;19(8):1528–1548. doi: 10.2174/1381612811319080020
  • Song Y, Chen W, Kang D, et al. Old friends in new guise”: exploiting privileged structures for scaffold re-evolution/refining. Comb Chem High Throughput Screen. 2014;17(6):536–553.
  • Zhang L, Zhang G, Xu S, et al. Recent advances of quinones as a privileged structure in drug discovery. Eur J Med Chem. 2021;5(223):113632. doi:10.1016/j.ejmech.2021.113632
  • Alqurashi RM, Farghaly TA, Sabour R, et al. Design, synthesis, antimicrobial screening and molecular modeling of novel 6,7 dimethylquinoxalin-2(1H)-one and thiazole derivatives targeting DNA gyrase enzyme. Bioorg Chem. 2023;134:106433. doi: 10.1016/j.bioorg.2023.106433
  • Khan I, Rehman W, Rahim F, et al. Synthesis, in vitro glucosidase inhibitory activity and molecular docking study of new Benzotriazole-Based Bis-Schiff Base Derivatives. Pharmaceuticals. 2023;16:17. doi: 10.3390/ph16010017
  • Kohnen-Johannsen KL, Kayser O. Tropane alkaloids: chemistry, pharmacology, biosynthesis and production. Molecules (Basel, Switzerland). 2019;24(4):796. doi: 10.3390/molecules24040796
  • Bedewitz MA, Jones AD, D’Auria JC, et al. Tropinone synthesis via an atypical polyketide synthase and P450-mediated cyclization. Nat Commun. 2018;9(1):5281. doi: 10.1038/s41467-018-07671-3
  • Alsamarrai ASH. Synthesis of tropane derivatives. In: Alkaloids - their importance in nature and human life. Intech Open; 2019. doi: 10.5772/intechopen.83382.
  • Grynkiewicz G, Gadzikowska M. Tropane alkaloids as medicinally useful natural products and their synthetic derivatives as new drugs. Pharmacol Rep. 2008;60:439–463.
  • Shim KH, Kang MJ, Sharma N, et al. Beauty of the beast: anticholinergic tropane alkaloids in therapeutics. Nat Prod Bioprospecting. 2022;12(33). doi: 10.1007/s13659-022-00357-w
  • Wei W, Cherukupalli S, Jing L, et al. Fsp3: A new parameter for drug-likeness. Drug Discov Today. 2020;25(10):1839–1845. doi: 10.1016/j.drudis.2020.07.017
  • Willstaetter R. About the constitution of the split products of atropine and cocaine. Ber Dtsch Chem Ges. 1898;31:1534–1553. doi: 10.1002/cber.18980310245
  • Hamilton DJ, Dekker T, Klein HF, et al. Escape from planarity in fragment-based drug discovery: a physicochemical and 3D property analysis of synthetic 3D fragment libraries. Drug Discov Today Technol. 2020;38:77–90. doi: 10.1016/j.ddtec.2021.05.001
  • Krzyzanowski A, Pahl A, Grigalunas M, et al. Spacial Score─A Comprehensive Topological Indicator for Small-Molecule Complexity. J Med Chem. 2023;66(18):12739–12750. 28. doi: 10.1021/acs.jmedchem.3c00689
  • Willstaetter R, Mueller W. On the structure of ecgonine. Ber Dtsch Chem Ges. 1898;31:2655–2669. doi:10.1002/cber.18980310316
  • Willstaetter R, Iglauer F. About oxymethylene tropinone. Ber Dtsch Chem Ges. 1900;33:359–365. doi:10.1002/cber.19000330151
  • Kai G, Zhang A, Guo Y, et al. Enhancing the production of tropane alkaloids in transgenic anisodus acutangulus hairy root cultures by over-expressing tropinone reductase I and hyoscyamine-6β-hydroxylase. Mol Biosyst. 2012;8(11):2883–2890. doi: 10.1039/c2mb25208b
  • Shi Z, Zou W, Zhu Z, et al. Tropane alkaloids (hyoscyamine, scopolamine and atropine) from genus Datura: extractions, contents, syntheses and effects. Ind Crops Prod. 2022;186:115283.
  • Zhou W, Wang C, Hao X, et al. A chromosome-level genome assembly of anesthetic drug–producing anisodus acutangulus provides insights into its evolution and the biosynthesis of tropane alkaloids. Plant Commun. 2023;100680. doi: 10.1016/j.xplc.2023.100680
  • Kai G, Li L, Zhang L, et al. Protein and cDNA sequences of anisodus acutangulus tropinone reductase I gene and applications in preparing transgenic plants. Faming Zhuanli Shenqing, CN 101168740 A 20080430. 2008.
  • Rudner B, Prapas AG. Aminotropanium compounds No Corporate Source data available. US 2948730 196008098. 1960.
  • Li Q, Zhu T, Zhang R, et al. Molecular cloning and functional analysis of hyoscyamine 6β-hydroxylase (H6H) in the poisonous and medicinal plant datura innoxia mill. Plant Physiol Biochem. 2020;153:11–19. doi: 10.1016/j.plaphy.2020.04.021
  • Farghaly TA, Alsaedi AMR, Alenazi NA, et al. Anti-viral activity of thiazole derivatives: an updated patent review. Expert Opin Ther Patents. 2022;32(7):791–815. doi: 10.1080/13543776.2022.2067477
  • Behbehani H, Dawood KM, Farghaly TA. Biological Evaluation of Benzosuberones. Expert Opin Ther Patents. 2018;28(1):5–29. doi: 10.1080/13543776.2018.1389898
  • Dawood KM, Farghaly TA, Raslan MA. Heteroannulation Routes to Bioactive Pyrazolooxazines. J Current Organic Chemistry. 2020;24:1943–1975. doi:10.2174/1570179417999200628035124
  • Farghaly TA, Harras MF, Alsaedi AMR, et al. Antiviral activity of pyrimidine containing compounds: patent review. Mini-Rev Med Chem. 2023;23:821–851. doi: 10.2174/1389557523666221220142911
  • Farghaly TA, Dawood K. Inhibitory activities of pyrazolo-oxazine heterocyclic derivatives. Mini Rev Med Chem. 2022;22(9):1256–1267. doi:10.2174/1389557522666211229114446
  • Roy A, Roy M, Gacem A, et al. Role of bioactive compounds in the treatment of hepatitis: a review. Front Pharmacol. 2022;13:1051751. doi: 10.3389/fphar.2022.1051751
  • Farghaly TA, Alfaifi GH, Gomha SM. Recent literature on the synthesis of thiazole derivatives and their biological activities. Mini Rev Med Chem. 2024;24:196–251. doi:10.2174/1389557523666230726142459
  • Farghaly TA, Alosaimy AM, Al-Qurashi NT, et al. The most recent compilation of reactions of enaminone derivatives with various amine derivatives to generate biologically active compounds. Mini Rev Med Chem. 2024;24: doi: 10.2174/1389557523666230913164038
  • Farghaly TA, Alqurashi RM, Masaret GS, et al. Recent methods for the synthesis of quinoxaline derivatives and their biological activities. Mini Rev Med Chem. 2024;24: doi: 10.2174/0113895575264375231012115026
  • Farghaly TA, Al-Hussain SA, Zaki MEA, et al. A review article on synthesis of different types of bioactive spiropyrazole derivatives. Polycycl Aromat Compd. 2023;43:5639–5734. doi: 10.1080/10406638.2022.2105911
  • Teotino U, Belia DD. p-Phenylphenacyl dervatives of l-hy cscyamane anad di-tropylatropine, US 3,356,682. 1967.
  • Liang ZJS. Ipratropium bromide aerosol composition and preparation method thereof. CN110302157B. 2023. https://patents.google.com/patent/CN110302157B/en
  • Cameron IG, Tasko MPE. Nebulizer formulation of levalbuterol and ipratropium. CA2596215A1. 2006.
  • Sung JC. PERRY JM, Tauber M. Improved stability of dry powders containing tiotropium and amino acid US20170304198A1. 2017.
  • Banholzer R, Sieger P, Kulinna C, et al. Crystalline tiotropium bromide monohydrate, processes for the preparation thereof, and pharmaceutical compositions. US 6,777,423 B. 2004.
  • Bundschuh D, Wollin S-L, Weimar C. Synergistic combination comprising roflumilast and an anticholinergic agent selected from ipratropium, oxitropium and tiotropium salts for the treatment of respiratory diseases. US20060189642A. 2006.
  • Busch-Petersen J, Laine DI, Palovich MR, et al. Preparation of azoniabicyclooctanes as M3 muscarinic acetylcholine receptor antagonists. PCT Int. ApplWO 2007016639 A2 20070208. 2007.
  • Busch-Petersen J, Laine DI, Palovich MR, et al. Preparation of 3-(arylethenyl)-8,8-dimethyl-8-azoniabicyclo[3.3.1]octanes as M3 muscarinic acetylcholine receptor antagonists. PCT Int. Appl., WO 2007016650 A2 20070208. 2007.
  • Lain DI, Wan Z, Yan H, et al. Design, synthesis, and structure-activity relationship of tropane muscarinic acetylcholine receptor antagonists. J Med Chem. 2009;52:5241–5252. doi: 10.1021/jm900736e
  • Bream RN, Hayes D, Hulcoop DG, et al. Development of synthetic routes, via a tropinone intermediate, to a long-acting muscarinic antagonist for the treatment of respiratory disease. Org Process Res Dev. 2013;17:641–650. doi: 10.1021/op3002933
  • Xu R, Sim M-K, Go M-L. Synthesis and pharmacological characterization of O-alkynyloximes of Tropinone and N-methylpiperidinone as muscarinic agonists. J Med Chem. 1998;41(17):3220–3231. doi: 10.1021/jm9708588
  • Makings LR, Garcia-Guzman B, Miguel H, et al. Preparation of spiro condensed piperidines as modulators of muscarinic receptors MODULATORS of MUSCARINIC RECEPTORS, WO 2007/076070. PCT Int. Appl., WO 2007100670 A1 20070907. 2007.
  • Drutu I, Garcia-Guzman B, Miguel M, et al. Muscarinic modulators based on 4-aminopiperidine, and their preparation, pharmaceutical compositions, and use as modulators of muscarinic receptors for treatment of CNS disorders. PCT Int. Appl., WO 2006105035 A2 20061005. 2006.
  • Pandey G, Bagul TD. Sahoo AK. [3 + 2] cycloaddition of nonstabilized azomethine ylides. 7. Stereoselective synthesis of Epibatidine and Analogues. J Org Chem. 1998;63:760.
  • Yogeeswari P, Sriram D, Bal TR, et al. Epibatidine and its analogues as nicotinic acetylcholine receptor agonist: an update. Nat Prod Res. 2006;20(5):497–505. doi: 10.1080/14786410600604583
  • Badio B, Garraffo HM, Plummer CV, et al. Synthesis and nicotinic activity of epiboxidine: an isoxazole analogue of epibatidine. Eur J Pharmacol. 1997;321:189–194. doi: 10.1016/S0014-2999(96)00939-9
  • Raâdl S, Hezky P, Hafner W, et al. Synthesis and binding studies of some epibatidine analogues. Bioorganic Med Chem Lett. 2000;10:55–58. doi: 10.1016/S0960-894X(99)00575-2
  • Peters D, Olsen GM, Nielsen SF, et al. Preparation of 8-azabicyclo[3.2.1]oct-2-ene and -octane derivatives as cholinergic ligands at the nicotinic acetyl choline receptors (nAchr). PCT Int. Appl., WO 2000032600 A1 20000608. 2000.
  • Bhatti BS, Clark TJ. Preparation of azabicycloalkanes as nicotinic cholinergic receptor agonists for treatment of central and autonomic nervous system disorders. PCT Int. Appl., WO 2002012245 A2 20020214. 2002.
  • Bhatti BS, Clark TJ, Miller CH, et al. Preparation of 2-pyridylmethyl(ene)-7-azabicyclo[2.2.1]heptanes as nicotinic cholinergic receptor agonists for treatment of central and autonomic nervous system disorders. PCT Int. Appl., WO 2002004442 A2 20020117. 2002.
  • Zheng G, Dwoskin LP, Deaciuc AG, et al. Synthesis and evaluation of a series of tropane analogues as novel vesicular monoamine transporter-2 ligands. Bioorganic Med Chem Lett. 2005;15(20):4463–4466. doi: 10.1016/j.bmcl.2005.07.032
  • Ji J, Li T, Lynch CL, et al. Fused bicycloheterocycle substituted azabicyclic alkane derivatives and their preparation, pharmaceutical compositions and use in the treatment of diseases. PCT Int. Appl., WO 2007137030 A2 20071129. 2007.
  • Edink E, Akdemir A, Jansen C, et al. Structure-based design, synthesis and structure–activity relationships of dibenzosuberyl- and benzoate-substituted tropines as ligands for acetylcholine-binding protein. Bioorganic Med Chem Lett. 2012;22(3):1448–1454. doi: 10.1016/j.bmcl.2011.12.008
  • Kohnen-Johannsen L, Kayser O. Tropane alkaloids: chemistry, pharmacology. Biosynthesis Prod Kathrin Mol. 2019;24:796.
  • Newman AH, Kline RH, Allen AC, et al. Novel 4‘4-substituted and 4’,4”-disubstituted 3a-(Diphenylmethoxy)tropane analogs as potent and selective dopamine uptake inhibitors. J Med Chem. 1995;38:3933–3940.
  • Jiang S, Chang AC, Abraham P, et al. SYNTHESIS and TRANSPORTER BINDING PROPERTIES of (R)-213,313- and (R).2~3o~-DIARYLTROPANES. Bioorganic Med Chem Lett. 1998;8:3689–3692. doi: 10.1016/S0960-894X(98)00673-8
  • Lomenzo SA, Izenwasser S, Katz JL, et al. The effects of alkyl substituents at the 6-position of cocaine analogues on dopamine transporter binding affinity and dopamine uptake inhibition. Med Chem Res. 1998;8:35–42.
  • Newman AH, Allen AC, Kline RH, et al. Preparation of 4’- and 4’,4’’-substituted-3α-(diphenylmethoxy)tropane analogs as cocaine therapeutics. U.S., US 5792775 A 19980811. 1998.
  • Zhang Y, Joseph DB, Bowen WD, et al. Synthesis and biological evaluation of tropane-like 1-□2-[Bis(4-fluorophenyl)methoxy]ethyl□-4-(3-phenylpropyl)piperazine (GBR 12909) Analogues. J Med Chem. 2001;44:3937–3945. doi: 10.1021/jm0101592
  • Zou M-F, Kopajtic T, Katz JL, et al. Structure-Activity Relationship Comparison of (S)-2â-Substituted 3r-(Bis[4-fluorophenyl]methoxy)tropanes and (R)-2â-Substituted 3â-(3,4-Dichlorophenyl)tropanes at the Dopamine Transporter. J Med Chem. 2003;46:2908–2916. doi: 10.1021/jm0300375
  • Peters D, Brown DT, Egestad B, et al. Enantiomers of 3-heteroaryl-8H-8-azabicyclo(3.2.1)oct-2-ene and their preparation, pharmaceutical compositions, and use as monoamine neurotransmitter re-uptake inhibitors. PCT Int. Appl., WO 2006064031 A1 20060622. 2006.
  • PETERS D, JONES D, Spencer N, et al. 8-azabicyclo[3.2.1]oct-2-ene derivatives and their use as monoamine neurotransmitter re-uptake inhibitors. Patent Appl. Publ. within the TVPP - United States, WO 2010/057848. 2009.
  • Bockaert J, Claeysen S, Compan V, et al. 5-HT(4) receptors: history, molecular pharmacology and brain functions. Neuropharmacology. 2008;55(6):922–931. doi: 10.1016/j.neuropharm.2008.05.013
  • Stiedl O, Pappa E, Konradsson-Geuken Å, et al. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory. Front Pharmacol. 2015;6:162. doi: 10.3389/fphar.2015.00162
  • Chaomin H, Xiang M, Juan H, et al. Preparation method of tropisetron hydrochloride. CN110845493B. 2021.
  • Längle UW, Wolf A, Cordier A. Enhancement of SDZ ICT 322-induced cataracts and skin changes in rats following vitamin E- and selenium-deficient diet. Arch Toxicol. 1997;71(5):283–289. doi:10.1007/s002040050388
  • Kostochka LM, Gan’shina TS, Mirzoyan RS, et al. Synthesis and antiserotoninergic activity of new tropane derivatives. Trans Khimiko-Farmatsevticheskii Zhurnal. 2010;44:6–9. doi: 10.1007/s11094-010-0494-6
  • GILBERT, Adam, Matthew. ARYL-8-azabicyclo[3.2.1]octanes for the treatment of depression. Publ. of the Int.Appl.WO 02/096906. 2002.
  • Gilbert AM, Stack GP. Preparation of 8-aza-bicyclo[3.2.1]octan-3-ol derivatives of 2,3-dihydro-1,4-benzodioxan and their 5-HT1A antagonist activity. PCT Int. Appl., WO 2002085900 A1 20021031. 2002.
  • Stack GP, Gilbert AM, Tran M. Preparation of azabicyclylmethyl derivatives of 2,3-dihydro-1,4-dioxino-[2,3-f]quinoline as 5-HT1A antagonists. PCT Int. Appl., WO 2002088130 A1 20021107. 2002.
  • Nenaydenko VG, Kabakov VY. Hydrogenated pyrido[4,3-b]indole derivatives useful in the treatment and prevention of neurodegenerative and other diseases, pharmaceutical composition and methods for the preparation and use thereof. PCT Int. Appl., WO 2011014098 A1 20110203. 2011.
  • Hung DT, Protter AA, Chakravarty S, et al. Preparation of hexahydroiminocyclohept[b]indole derivatives and analogs for use as histamine receptor modulators. PCT Int. Appl., WO 2009120720 A1 20091001. 2009.
  • Yang S-W; Ho G; Tulshian D, et al. Identification of 3-substituted N-benzhydryl-nortropane analogs as nociception receptor ligands for the management of cough and anxiety. Bioorg Med Chem Lett. 2009;19:2482–2486. doi: 10.1016/j.bmcl.2009.03.057
  • Takahashi H, Sugimoto Y, Yoshizumi T, et al. Preparation of cycloalkanopyridine derivatives as antagonists of nociceptin receptor. PCT Int. Appl., WO 2005085228 A1 20050915. 2005.
  • Tulshian D, Ho GD, Ng FW. Preparation of azabicyclo[3.2.1]octanols and related compounds as superior agonists for nociceptin receptor ORL-1. PCT Int. Appl., WO 2003039469 A2 20030515. 2003.
  • Ho GD, Tulshian D, Yang S-W. 3-Monosubstituted tropane derivatives as nociceptin receptor ligands. PCT Int. Appl., WO 2007053435 A1 20070510. 2007.
  • Irwin KK, Renzette N, Kowalik TF, et al. Antiviral drug resistance as an adaptive process. Virus Evol. 2016;2(1):vew014. doi: 10.1093/ve/vew014
  • Dorr P, Westby M, Dobbs S, et al. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob Agents Chemother. 2005;49(11):4721–32. doi: 10.1128/AAC.49.11.4721-4732.2005
  • Tan Q, Zhu Y, Li J, et al. Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science. 2013;341:1387–1390. doi: 10.1126/science.1241475
  • Pfizer Ltd. Preparation of imidazopyridine substituted tropane derivatives with CCR5 receptor antagonist activity for the treatment of HIV and inflammation. WO2005033107. 2005.
  • Pfizer Ltd. 8-Azabicyclo[3.2.1]octane derivatives with an activity on chemokine CCR5 receptors and their preparation, pharmaceutical compositions and use for treatment of inflammatory diseases and infection caused by HIV and genetically related retroviruses. WO2006067584. 2006.
  • Supuran CT. Therapeutic compounds: patent evaluation of WO2011011652A1. Expert Opin Ther Pat. 2011;21(9):1491–1495. doi: 10.1517/13543776.2011.584873
  • Armour DR, de Groot MJ, Price DA, et al. The discovery of tropane-derived CCR5 receptor antagonists chem. Chem Biol Drug Des. 2006;67(4):305–308. doi: 10.1111/j.1747-0285.2006.00376.x
  • Badger AM. Pharmaceutical compns. contg. azaspirane derivs. for treatment of human immunodeficiency virus infections. PCT Int. Appl., WO 9503048 A1 19950202. 1995.
  • Badger AM. Pharmaceutical compositions containing azaspirane derivatives for treatment of human immunodeficiency virus infections. PCT Int. Appl. WO 9503047 A1 19950202. 1995.
  • Özçelik B, Kartal M, Orhan I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm Biol. 2011;49(4):396–402. doi: 10.3109/13880209.2010.519390
  • Wei W, Kong N, Liu MZ, et al. Anisodamine potently inhibits SARS-CoV-2 infection in vitro and targets its main protease. Biochem Biophys Res Commun. 2022;616:8–13. doi: 10.1016/j.bbrc.2022.05.024
  • Steppeler F, Iwan D, Gaida R, et al. Chiral 2-azabicycloalkanes bearing 1,2,3-triazole, thiourea, and ebselen moieties - synthesis and biological activity. Biomed Pharmacother. 2023;164:114908. doi: 10.1016/j.biopha.2023.114908
  • Urban-Chmiel R, Marek A, Stępień-Pyśniak D, et al. Antibiotic Resistance in bacteria-A review. Antibiotics. 2022;11(8):1079. doi: 10.3390/antibiotics11081079
  • Yanhong W, Da H, Huihui L, et al. Application of Retapamulin compound in preparation of anti-EV 71 virus medicine. CN113143923A. 2021.
  • Prevet H, Moune M, Tanina A, et al. A fragment-based approach towards the discovery of N-substituted tropinones as inhibitors of mycobacterium tuberculosis transcriptional regulator EthR2. Eur J Med Chem. 2019;167:426–438. doi: 10.1016/j.ejmech.2019.02.023
  • Reddy BS, Reddy AB, Reddy GR, et al. Synthesis and antibacterial activity of novel [3-(4-substitutedphenylamino)- 8-azabicyclo [3.2.1] oct-8yl]-phenyl-methanone derivatives. J Korean Chem Soc. 2011;55(6):969–973. doi: 10.5012/jkcs.2011.55.6.969
  • Arhin F, Be´langer O, Ciblat S, et al. A new class of small molecule RNA polymerase inhibitors with activity against Rifampicin-resistant Staphylococcus aureus1. Bioorg Med Chem. 2006;14:5812–5832. doi: 10.1016/j.bmc.2006.05.035
  • Piechowska K; Świtalska M; Cytarska J, et al. Discovery of tropinonethiazole derivatives as potent caspase 3/7 activators, and noncompetitive tyrosinase inhibitors with high antiproliferative activity: rational design, one-pot tricomponent synthesis, and lipophilicity determination. Eur J Med Chem. 2019;175:162–171. doi: 10.1016/j.ejmech.2019.05.006
  • Piechowska K, Mizerska-Kowalska M, Zdzisińska B, et al. Tropinone-derived alkaloids as potent anticancer agents: synthesis, tyrosinase inhibition, mechanism of action, DFT Calculation, and molecular docking studies. Int J Mol Sci. 2020;21(23):9050. doi: 10.3390/ijms21239050 28 PMID: 33260768; PMCID: PMC7731314.
  • Yin X-J, Geng C-A, Chen X-L, et al. Synthesis and cytotoxicity evaluation of tropinone derivatives. Nat Prod Bioprospect. 2017;7(2):215–223. doi: 10.1007/s13659-017-0124-z
  • George RF, Samir N, Ayoub IM, et al. Synthesis, antiproliferative activity and 2D-QSAR study of some 8-alkyl-2,4-bisbenzylidene-3-nortropinones. Future Med Chem. 2018;10(24):2815–2833. doi: 10.4155/fmc-2018-0205
  • Chen J, Yin X, Geng C, et al. Tropinone derivatives useful in treatment of cancer and their preparation. Faming Zhuanli Shenqing, CN 105924436 A 20160907. 2016.
  • Ishikawa F, Saito Y, Hashizume Y, et al. Preparation of 7H-pyrrolo[2,3-d]pyrimidine and 1H-pyrazolo[3,4-d]pyrimidine derivatives as agents for treating or controlling recurrence of acute myelogenous leukemia. PCT Int. Appl., WO 2014017659 A1 20140130. 2014.
  • Borcherding DR, Gross A, Shum PW-K, et al. Preparation of pyrazolyl phenyl urea derivatives as inhibitors of p38 kinase and/or tumor necrosis factor (TNF) inhibitors for the treatment of inflammations. PCT Int. Appl., WO 2004100946 A1 20041125. 2004.
  • Choi-Sledeski YM, Liang G, Shum PW-K. Tropinone benzylamines as β-tryptase inhibitors. From PCT Int. Appl., WO 2011087652 A1 20110721 2011.
  • Liang G, Choi-Sledeski YM, Shum P, et al. A β-tryptase inhibitor with a tropanylamide scaffold to improve in vitro stability and to lower hERG channel binding affinity. Bioorg Med Chem Lett. 2012;22(4):1606–1610. doi: 10.1016/j.bmcl.2011.12.127
  • Esposito L, Cummings J, Hudson FM, et al. Bis(dihydroxyaryl) compounds, pharmaceutical compositions containing them, and methods for the treatment of amyloid diseases and synucleinopathies. PCT Int. Appl., WO 2008154083 A2 20081218. 2008.
  • Esposito L, Cummings J, Hudson M, et al. Bis(dihydroxyaryl) compounds, pharmaceutical compositions containing them, and methods for the treatment of amyloid diseases and synucleinopathies. U.S. Pat. Appl. Publ., US 20070276034 A1 20071129. 2007.
  • Baeschlin DK, Fenton G, Namoto K, et al. Azabicyclooctane compounds as DPP-IV inhibitors and their preparation, pharmaceutical compositions and use in the treatment of diseases. PCT Int. Appl., WO 2007115821 A2 20071018. 2007.
  • Zheng Q, Xie C, Li Z, et al. Tropinone derivative and its pharmacologically acceptable salt, preparation method and application for treating type II diabetes. Faming Zhuanli Shenqing, CN 102993197 A 20130327. 2013.
  • Nagase T, Sasaki T, Takahashi T. Preparation of 4-sulfonylpiperidine derivatives as LCE inhibitors. PCT Int. Appl. WO 2009038021 A1 20090326. 2009.
  • Aletru M, Braun A, Namane C, et al. Preparation of urea derivatives of tropane and their therapeutic application. PCT Int. Appl. WO 2008000951 A2 20080103. 2008.
  • Guckian KM, Lin EY-S, Silvian L, et al. Design and synthesis of a series of meta aniline-based LFA-1 ICAM inhibitors. Bioorganic Med Chem Lett. 2008;18:5249–5251. doi: 10.1016/j.bmcl.2008.08.061
  • Watson RJ, Allen DR, Birch HL, et al. Development of CXCR3 antagonists. Part 3: tropenyl and homotropenyl-piperidine urea derivatives. Bioorg Med Chem Lett. 2008;18(1):147–151. doi: 10.1016/j.bmcl.2007.10.109 1
  • Chowdhury S, Owens KN, Jason Herr RJ, et al. Phenotypic J optimization of urea-thiophene carboxamides to yield potent, well tolerated and orally active protective agents against aminoglycoside-induced hearing loss. J Med Chem. 2018;61(1):84–97. doi: 10.1021/acs.jmedchem.7b00932
  • Bezencon O, Boss C, Bur D, et al. Preparation of bicyclic five-membered heteroaryl derivatives and their use as renin inhibitors. PCT Int. Appl., WO 2006092268 A1 20060908. 2006.
  • Braun A, Cornet B, Courtemanche G, et al. Preparation of aminotropane derivatives and their therapeutic applications. Fr. Demande, FR 2873693 A1 20060203. 2006.
  • Patchett AA, Tata JR, Lu Z Preparation of bridged piperidines promoting release of growth hormone. From Brit. UK Pat. Appl., GB 2298647 A 19960911. 1996.
  • Daniel DL, Daisuke RS, Priscilla VD, et al. Amidoalkyl-8-azabicyclo[3.2.1]octane compounds as mu opioid receptor antagonists US20110124677A1. 2011.
  • Najmi A, Javed SA, Al Bratty M, et al. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules. 2022;27(2):349. doi: 10.3390/molecules27020349
  • Atanasov AG, Zotchev SB, Dirsch VM. International Natural Product Sciences Taskforce, supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20(3):200–216. doi: 10.1038/s41573-020-00114-z
  • Castagnolo D. Looking back and moving forward in medicinal chemistry. Nat Commun. 2023;14(1):4299. doi: 10.1038/s41467-023-39949-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.