49
Views
0
CrossRef citations to date
0
Altmetric
Review

FAK inhibitors in cancer, a patent review – an update on progress

, , , , &
Pages 593-610 | Received 26 Jan 2024, Accepted 12 Jun 2024, Published online: 02 Jul 2024

References

  • Lv P-C, Jiang A-Q, Zhang W-M, et al. FAK inhibitors in cancer, a patent review. Expert Opin Ther Patents. 2018;28(2):139–145. doi: 10.1080/13543776.2018.1414183
  • Dawson JC, Serrels A, Stupack DG, et al. Targeting FAK in anticancer combination therapies. Nat Rev Cancer. 2021;21(5):313–324. doi: 10.1038/s41568-021-00340-6
  • Brullo C, Tasso B. New Insights on Fak and Fak Inhibitors. Curr Med Chem. 2021;28(17):3318–3338. doi: 10.2174/0929867327666201103162239
  • Demircioglu F, Wang J, Candido J, et al. Cancer associated fibroblast FAK regulates malignant cell metabolism. Nat Commun. 2020;11(1):1290. doi: 10.1038/s41467-020-15104-3
  • Zhou J, Yi Q, Tang L. The roles of nuclear focal adhesion kinase (FAK) on cancer: a focused review. J Exp Clin Cancer Res. 2019;38(1):38. doi: 10.1186/s13046-019-1265-1
  • Goni GM, Epifano C, Boskovic J, et al. Phosphatidylinositol 4,5-bisphosphate triggers activation of focal adhesion kinase by inducing clustering and conformational changes. Proc Natl Acad Sci U S A. 2014;111(31):E3177–186. doi: 10.1073/pnas.1317022111
  • He M, Bakken T, Kassimova A, et al. Focal adhesion kinase is required for KSHV vGPCR signaling. Mol Carcinog. 2012;51(4):339–351. doi: 10.1002/mc.20790
  • Lang L, Tao J, Yang CM, et al. Tumor suppressive role of microRNA-4731-5p in breast cancer through reduction of PAICS-induced FAK phosphorylation. Cell Death Discov. 2022;8(1). doi: 10.1038/s41420-022-00938-1
  • Wang J, Wen T, Li Z, et al. MicroRNA-1224 inhibits tumor metastasis in intestinal-type gastric cancer by directly targeting FAK. Front Oncol. 2019;9:9. doi: 10.3389/fonc.2019.00222
  • Jiang H, Liu X, Knolhoff BL, et al. Development of resistance to FAK inhibition in pancreatic cancer is linked to stromal depletion. Gut. 2020;69(1):122–132. doi: 10.1136/gutjnl-2018-317424
  • Canel M, Byron A, Sims AH, et al. Nuclear FAK and Runx1 cooperate to regulate IGFBP3, cell-cycle progression, and tumor growth. Cancer Res. 2017;77(19):5301–5312. doi: 10.1158/0008-5472.CAN-17-0418
  • Xie Y-L, Liu W-Z, Qian L-H. Compound as FAK inhibitor and use thereof. WO2023116527. 2023.
  • Gray S, Groendyke. Small-molecule focal adhesion kinase (FAK) inhibitors. WO2020231726. 2020.
  • Crews CM, Cromm PM, Crew AP. Bifunctional substituted pyrimidines as modulators of FAK proteolyse. 2020. WO2020023851.
  • Qu M, Liu Z, Zhao D, et al. Design, synthesis and biological evaluation of sulfonamide-substituted diphenylpyrimidine derivatives (sul-DPPYs) as potent focal adhesion kinase (FAK) inhibitors with antitumor activity. Bioorg Med Chem. 2017;25(15):3989–3996. doi: 10.1016/j.bmc.2017.05.044
  • Du W, Li Y, Wen K, et al. Preparation of Fak inhibitor and drug combination thereof. WO2020135442A1. 2020.
  • Liu H, Wu B, Ge Y, et al. Phosphamide-containing diphenylpyrimidine analogues (PA-DPPYs) as potent focal adhesion kinase (FAK) inhibitors with enhanced activity against pancreatic cancer cell lines. Bioorg Med Chem. 2017;25(24):6313–6321. doi: 10.1016/j.bmc.2017.09.041
  • Wang L, Ai M, Yu J, et al. Structure-based modification of carbonyl-diphenylpyrimidines (Car-DPPYs) as a novel focal adhesion kinase (FAK) inhibitor against various stubborn cancer cells. Eur J Med Chem. 2019;172:154–162. doi: 10.1016/j.ejmech.2019.04.004
  • Wang D, Fang Y, Wang H, et al. Synthesis and evaluation of novel F-18-labeled pyrimidine derivatives: potential FAK inhibitors and PET imaging agents for cancer detection. RSC Adv. 2017;7(36):22388–22399. doi: 10.1039/C6RA28851K
  • Qi Y, Li Y, Fang Y, et al. Design, synthesis, and biological evaluation of F-18-labelled 2, 4-diaminopyrimidine-type FAK-targeted inhibitors as potential tumour imaging agents. Bioorg & Med Chem Lett. 2020;30(19):127452. doi: 10.1016/j.bmcl.2020.127452
  • Qi Y, Li Y, Fang Y, et al. Design, synthesis, biological evaluation, and molecular docking of 2,4-Diaminopyrimidine derivatives targeting focal adhesion kinase as tumor radiotracers. Mol Pharm. 2021;18(4):1634–1642. doi: 10.1021/acs.molpharmaceut.0c01088
  • Su Y, Li R, Ning X, et al. Discovery of 2,4-diarylaminopyrimidine derivatives bearing dithiocarbamate moiety as novel FAK inhibitors with antitumor and anti-angiogenesis activities. Eur J Med Chem. 2019;177:32–46. doi: 10.1016/j.ejmech.2019.05.048
  • Yin Y-X, Su Y. Aminodithioformate compounds as FAK inhibitors. CN111072571B. 2021.
  • Xie H, Lin X, Zhang Y, et al. Design, synthesis and biological evaluation of ring-fused pyrazoloamino pyridine/pyrimidine derivatives as potential FAK inhibitors. Bioorg & Med Chem Lett. 2020;30(21):21. doi: 10.1016/j.bmcl.2020.127459
  • Lin X-L, Xie H-M, Hu Y-X, et al. Adhesion plaque kinase inhibitors and their uses. CN108948019B. 2022.
  • Wang S, Zhang R-H, Zhang H, et al. Design, synthesis, and biological evaluation of 2,4-diamino pyrimidine derivatives as potent FAK inhibitors with anti-cancer and anti-angiogenesis activities. Eur J Med Chem. 2021;222:222. doi: 10.1016/j.ejmech.2021.113573
  • Chen T, Liu Y, Shi M, et al. Design, synthesis, and biological evaluation of novel covalent inhibitors targeting focal adhesion kinase. Bioorg & Med Chem Lett. 2021;54:54. doi: 10.1016/j.bmcl.2021.128433
  • Chen T, Liu Y, Liu J, et al. Design, synthesis and biological evaluation of novel FAK inhibitors with better selectivity over IR than TAE226. Bioorg Chem. 2022;124:124. doi: 10.1016/j.bioorg.2022.105790
  • Han C, Shen K, Wang S, et al. Discovery of novel 2,4-dianilinopyrimidine derivatives containing 4-(Morpholinomethyl)phenyl and N-Substituted benzamides as potential FAK inhibitors and anticancer agents. Molecules. 2021;26(14):4187. doi: 10.3390/molecules26144187
  • Han C, Wu L-T, Su F, et al. 2-((5-chloro-2-(4-morpholinomethylanilino) pyrimidin-4-yl) amino) benzamide derivative. CN113061117B. 2023.
  • Zheng X, Li X, Tian L, et al. Design, synthesis and activity evaluation of isopropylsulfonyl-substituted 2,4-diarylaminopyrimidine derivatives as FAK inhibitors for the potential treatment of pancreatic cancer. Eur J Med Chem. 2022;241:241. doi: 10.1016/j.ejmech.2022.114607
  • Long Z, Zuo Y, Li R, et al. Design, synthesis and biological evaluation of 4-arylamino-pyrimidine derivatives as focal adhesion kinase inhibitors. Bioorg Chem. 2023;140:140. doi: 10.1016/j.bioorg.2023.106792
  • Yan L-J, Long Z-W, Zuo Y-Q, et al. Pyrimidine compound containing thiophene as well as preparation method and application thereof. CN114213400A. 2022.
  • Liu Y, Kong L-J, Li N, et al. Design, synthesis and biological evaluation of novel 2,4-diaminopyrimidine cinnamyl derivatives as inhibitors of FAK with potent anti-gastric cancer activities. Bioorg Chem. 2023;141:141. doi: 10.1016/j.bioorg.2023.106895
  • Wang R, Chen Y, Zhao X, et al. Design, synthesis and biological evaluation of novel 7H-pyrrolo[2,3-d]pyrimidine derivatives as potential FAK inhibitors and anticancer agents. Eur J Med Chem. 2019;183:183. doi: 10.1016/j.ejmech.2019.111716
  • Zhao D-M, Wang R-F, Cheng M-S, et al. Pyrrolopyrimidine derivative as well as preparation method and application thereof. CN113087709A. 2021.
  • Wang R, Zhao X, Yu S, et al. Discovery of 7H-pyrrolo[2,3-d]pyridine derivatives as potent FAK inhibitors: Design, synthesis, biological evaluation and molecular docking study. Bioorg Chem. 2020;102:102. doi: 10.1016/j.bioorg.2020.104092
  • Tan H, Liu Y, Gong C, et al. Synthesis and evaluation of FAK inhibitors with a 5-fluoro-7H-pyrrolo[2,3-d]pyrimidine scaffold as anti-hepatocellular carcinoma agents. Eur J Med Chem. 2021;223:223. doi: 10.1016/j.ejmech.2021.113670
  • Wei W, Feng Z, Liu Z, et al. Design, synthesis and biological evaluation of 7-((7H-pyrrolo[2,3-d]pyrimidin-4-yl)oxy)-2,3-dihydro-1H-inden-1-one derivatives as potent FAK inhibitors for the treatment of ovarian cancer. Eur J Med Chem. 2022;228:228. doi: 10.1016/j.ejmech.2021.113978
  • Yu L-T, Wei W. 7H-pyrrolo [2, 3-d] pyrimidine derivative as well as preparation method and application thereof. CN115368364A. 2022.
  • Zeng S, Yuan S, Zhang Y, et al. Discovery of novel pyrrolo 2,3-d pyrimidine derivatives as potent FAK inhibitors based on cyclization strategy. Bioorg Chem. 2023;139:139. doi: 10.1016/j.bioorg.2023.106713
  • Zeng S-X, Huang W-H, Wang Z-Y, et al. Compound with FAK inhibitory activity as well as preparation method and application thereof. CN116478168A. 2023.
  • Wang R, Yu S, Zhao X, et al. Design, synthesis, biological evaluation and molecular docking study of novel thieno[3,2-d]pyrimidine derivatives as potent FAK inhibitors. Eur J Med Chem. 2020;188:188. doi: 10.1016/j.ejmech.2019.112024
  • Cho H, Shin I, Yoon H, et al. Identification of Thieno[3,2-d]pyrimidine derivatives as dual inhibitors of focal adhesion kinase and FMS-like tyrosine kinase 3. J Med Chem. 2021;64(16):11934–11957. doi: 10.1021/acs.jmedchem.1c00459
  • Sim TB, Kim H, Yoon H. Jong [32-] 315– Inhibitory activity of thieno32-d]pyrimidine derivatives on T315I-Bcr-Abl point mutation. KR101704386B1. 2017.
  • Sun J, Ren S-Z, Lu X-Y, et al. Discovery of a series of 1,3,4-oxadiazole-2(3H)-thione derivatives containing piperazine skeleton as potential FAK inhibitors. Bioorg Med Chem. 2017;25(9):2593–2600. doi: 10.1016/j.bmc.2017.03.038
  • Sun J, Lian Z-M, Zhu H-L, et al. Oxadiazole-containing piperazine derivative as well as preparation method and use thereof. CN105777731B. 2018.
  • Altintop MD, Sever B, Ciftci GA, et al. Design, synthesis, in vitro and in silico evaluation of a new series of oxadiazole-based anticancer agents as potential Akt and FAK inhibitors. Eur J Med Chem. 2018;155:905–924. doi: 10.1016/j.ejmech.2018.06.049
  • Dao P, Lietha D, Etheve-Quelquejeu M, et al. Synthesis of novel 1,2,4-triazine scaffold as FAK inhibitors with antitumor activity. Bioorg & Med Chem Lett. 2017;27(8):1727–1730. doi: 10.1016/j.bmcl.2017.02.072
  • Hamadi A, Bouali M, Dontenwill M, et al. Regulation of focal adhesion dynamics and disassembly by phosphorylation of FAK at tyrosine 397. J Cell Sci. 2005;118(19):4415–4425. doi: 10.1242/jcs.02565
  • Yoon H, Dehart JP, Murphy JM, et al. Understanding the roles of FAK in cancer: inhibitors, genetic models, and new insights. J Histochem Cytochem. 2015;63(2):114–128. doi: 10.1369/0022155414561498
  • Ou W-B, Lu M, Eilers G, et al. Co-targeting of FAK and MDM2 triggers additive anti-proliferative effects in mesothelioma via a coordinated reactivation of p53. Br J Cancer. 2016;115(10):1253–1263. doi: 10.1038/bjc.2016.331
  • Stahl E, Nott R, Koessel K, et al. Computational-based discovery of FAK FERM domain chemical probes that inhibit HER2-FAK cancer signaling. Chem Biol Drug Des. 2020;95(6):584–599. doi: 10.1111/cbdd.13671
  • Scheswohl DM, Harrell JR, Rajfur Z, et al. Multiple paxillin binding sites regulate FAK function. JMS. 2008;3:1. doi: 10.1186/1750-2187-3-1
  • Ohba T, Ishino M, Aoto H, et al. Interaction of two proline-rich sequences of cell adhesion kinase β with SH3 domains of p130Cas-related proteins and a GTPase-activating protein, Graf. Biochem J. 1998;330(3):1249–1254. doi: 10.1042/bj3301249
  • Lawson C, Lim S-T, Uryu S, et al. FAK promotes recruitment of talin to nascent adhesions to control cell motility. J Cell Bio. 2012;196(2):223–232. doi: 10.1083/jcb.201108078
  • Cho J-H, Muralidharan V, Vila-Perello M, et al. Tuning protein autoinhibition by domain destabilization. Nat Struct Mol Biol. 2011;18(5):550–U163. doi: 10.1038/nsmb.2039
  • Yang F, Xu K, Zhang S, et al. Discovery of novel chloropyramine-cinnamic acid hybrids as potential FAK inhibitors for intervention of metastatic triple-negative breast cancer. Bioorg Med Chem. 2022;66:66. doi: 10.1016/j.bmc.2022.116809
  • Liu S, Yu J, Zhang H, et al. TP53 Co-mutations in advanced EGFR-mutated non–small cell lung cancer: prognosis and therapeutic strategy for cancer therapy. Front Oncol. 2022;12:12. doi: 10.3389/fonc.2022.860563
  • Ai M, Wang C, Tang Z, et al. Design and synthesis of diphenylpyrimidine derivatives (DPPYs) as potential dual EGFR T790M and FAK inhibitors against a diverse range of cancer cell lines. Bioorg Chem. 2020;94:94. doi: 10.1016/j.bioorg.2019.103408
  • Ma X-D, Wang L-H, Yuan H, et al. Novel pyrimidine anti-tumor compound and preparation method and application thereof. CN107235931A. 2017.
  • Gavriil E-S, Doukatas A, Karampelas T, et al. Design, synthesis and biological evaluation of novel substituted purine isosters as EGFR kinase inhibitors, with promising pharmacokinetic profile and in vivo efficacy. Eur J Med Chem. 2019;176:393–409. doi: 10.1016/j.ejmech.2019.05.029
  • Luo Q-Y, Zhou S-N, Pan W-T, et al. A multi-kinase inhibitor APG-2449 enhances the antitumor effect of ibrutinib in esophageal squamous cell carcinoma via EGFR/FAK pathway inhibition. Biochem Pharmacol. 2021;183:183. doi: 10.1016/j.bcp.2020.114318
  • Elbadawi MM, Eldehna WM, Abd El-Hafeez AA, et al. 2-Arylquinolines as novel anticancer agents with dual EGFR/FAK kinase inhibitory activity: synthesis, biological evaluation, and molecular modelling insights. J Enzyme Inhib Med Chem. 2022;37(1):349–372. doi: 10.1080/14756366.2021.2015344
  • Sun J, Fang Z-Y, Tao Y-N, et al. Design, Synthesis and Antitumor Activity of FAK/PLK1 Dual Inhibitors with Quinazolinone as the Skeleton. Chem & Biodivers. 2023;20(4). doi: 10.1002/cbdv.202300146
  • Kassab AE, Hassan RA. Novel benzotriazole N-acylarylhydrazone hybrids: Design, synthesis, anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis and FAK inhibition. Bioorg Chem. 2018;80:531–544. doi: 10.1016/j.bioorg.2018.07.008
  • Mustafa M, Abd El-Hafeez AA, Abdelhamid D, et al. A first-in-class anticancer dual HDAC2/FAK inhibitors bearing hydroxamates/benzamides capped by pyridinyl-1,2,4-triazoles. Eur J Med Chem. 2021;222:222. doi: 10.1016/j.ejmech.2021.113569
  • Mustafa M, Abuo-Rahma GE-DA, El-Hafeez AAA, et al. Discovery of antiproliferative and anti-FAK inhibitory activity of 1,2,4-triazole derivatives containing acetamido carboxylic acid skeleton. Bioorg & Med Chem Lett. 2021:40. doi: 10.1016/j.bmcl.2021.127965
  • Song J, Liu X, Zhang Y-F, et al. The dual FAK-HDAC inhibitor MY-1259 displays potent activities in gastric cancers in vitro and in vivo. Bioorg Chem. 2023;131:131. doi: 10.1016/j.bioorg.2022.106328
  • Zhang J, Xu K, Yang F, et al. Design, synthesis and evaluation of nitric oxide releasing derivatives of 2,4-diaminopyrimidine as novel FAK inhibitors for intervention of metastatic triple-negative breast cancer. Eur J Med Chem. 2023;250:250. doi: 10.1016/j.ejmech.2023.115192
  • Kang F-H, Liu J-Y, Zhang J-L, et al. 2, 4-diphenylamine pyrimidine derivative as well as preparation method and application thereof. CN116425735A. 2023.
  • Cao C, He M, Wang L, et al. Chemistries of bifunctional PROTAC degraders. Chem Soc Rev. 2022;51(16):7066–7114. doi: 10.1039/D2CS00220E
  • Huo X, Zhang W, Zhao G, et al. FAK PROTAC inhibits ovarian tumor growth and metastasis by disrupting kinase dependent and independent pathways. Front Oncol. 2022;12:12. doi: 10.3389/fonc.2022.851065
  • Cromm PM, Samarasinghe KTG, Hines J, et al. Addressing kinase-independent functions of Fak via PROTAC-mediated degradation. J Am Chem Soc. 2018;140(49):17019–17026. doi: 10.1021/jacs.8b08008
  • Popow J, Arnhof H, Bader G, et al. Highly selective PTK2 proteolysis targeting chimeras to probe focal adhesion kinase scaffolding functions. J Med Chem. 2019;62(5):2508–2520. doi: 10.1021/acs.jmedchem.8b01826
  • Gao H, Wu Y, Sun Y, et al. Design, synthesis, and evaluation of highly potent FAK-Targeting PROTACs. ACS Med Chem Lett. 2020;11(10):1855–1862. doi: 10.1021/acsmedchemlett.9b00372
  • Liu J, Xue L, Xu X, et al. FAK-targeting PROTAC demonstrates enhanced antitumor activity against KRAS mutant non-small cell lung cancer. Exp Cell Res. 2021;408(2):112868. doi: 10.1016/j.yexcr.2021.112868
  • Law RP, Nunes J, Chung C-W, et al. Discovery and characterisation of highly cooperative FAK-Degrading PROTACs. Angew Chem-Int Ed. 2021;60(43):23327–23334. doi: 10.1002/anie.202109237
  • Sun Y, Wang R, Sun Y, et al. Identification of novel and potent PROTACs targeting FAK for non-small cell lung cancer: design, synthesis, and biological study. Eur J Med Chem. 2022;237:237. doi: 10.1016/j.ejmech.2022.114373
  • Zhao D-M, Wang R-F, Cheng M-S, et al. Compound for targeted degradation of focal adhesion kinase and medical application thereof. Biomed Res Int. 2021;2021:1–11. doi: 10.1155/2021/6685493
  • Qin Q, Wang R, Fu Q, et al. Design, synthesis, and biological evaluation of potent FAK-degrading PROTACs. J Enzyme Inhib Med Chem. 2022;37(1):2241–2255. doi: 10.1080/14756366.2022.2100886
  • Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05512208
  • Xing P, Zhao Q, Zhang L, et al. Conteltinib (CT-707) in patients with advanced ALK-positive non-small cell lung cancer: a multicenter, open-label, first-in-human phase 1 study. BMC Med. 2022;20(1). doi: 10.1186/s12916-022-02646-0
  • Available from: https://classic.clinicaltrials.gov/ct2/show/NCT06166836
  • Aung KL, McWhirter E, Welch S, et al. A phase II trial of GSK2256098 and trametinib in patients with advanced pancreatic ductal adenocarcinoma. J Gastrointest Oncol. 2022;13(6):3216–3226. doi: 10.21037/jgo-22-86
  • Fang DD, Tao R, Wang GF, et al. Discovery of a novel ALK/ROS1/FAK inhibitor, APG-2449, in preclinical non-small cell lung cancer and ovarian cancer models. BMC Cancer. 2022;22(1). doi: 10.1186/s12885-022-09799-4
  • Rivera JO, Crespo GV, Inyushin M, et al. Pyk2/FAK signaling is upregulated in recurrent glioblastoma tumors in a C57BL/6/GL261 glioma implantation model. Int J Mol Sci. 2023;24(17):13467. doi: 10.3390/ijms241713467
  • Farand J, Mai N, Chandrasekhar J, et al. Selectivity switch between FAK and Pyk2: Macrocyclization of FAK inhibitors improves Pyk2 potency. Bioorg & Med Chem Lett. 2016;26(24):5926–5930. doi: 10.1016/j.bmcl.2016.10.092
  • Berger BT, Amaral M, Kokh DB, et al. Structure-kinetic relationship reveals the mechanism of selectivity of FAK inhibitors over PYK2. Cell Chem Biol. 2021;28(5):686–698. doi: 10.1016/j.chembiol.2021.01.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.