0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent advances in the development of P2Y14R inhibitors: a patent and literature review (2018-present)

, , , &
Received 18 Dec 2023, Accepted 12 Jun 2024, Accepted author version posted online: 18 Jun 2024
Accepted author version

REFERENCES

  • Huang Z, Xie N, Illes P, et al. From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther. 2021;6(1):162. doi: 10.1038/s41392-021-00553-z
  • Burnstock G. Introduction: P2 receptors. Curr Top Med Chem. 2004;4(8):793–803. doi: 10.2174/1568026043451014
  • Boeynaems J M, Robaye B, Janssens R, et al. Overview of P2Y receptors as therapeutic targets. Drug Dev Res. 2001;52(1–2):187–189. doi: 10.1002/ddr.1114
  • Rafehi M, Müller C E. Tools and drugs for uracil nucleotide-activated P2Y receptors. Pharmacol Ther. 2018;190:24–80. doi: 10.1016/j.pharmthera.2018.04.002
  • Scrivens M, Dickenson JM. Pharmacological effects mediated by UDP-glucose that are independent of P2Y14 receptor expression. Pharmacol Res. 2005;51(6):533–538. doi: 10.1016/j.phrs.2005.02.001
  • Ma J, Wei K, Liu J, et al. Glycogen metabolism regulates macrophage-mediated acute inflammatory responses. Nat Commun. 2020;11(1):1769. doi: 10.1038/s41467-020-15636-8
  • Das A, Ko H, Burianek L E, et al. Human P2Y 14 Receptor Agonists: Truncation of the Hexose Moiety of Uridine-5′-Diphosphoglucose and Its Replacement with Alkyl and Aryl Groups. J Med Chem. 2010;53(1):471–480. doi: 10.1021/jm901432g
  • Gauthier J Y, Belley M, Deschênes D, et al. The identification of 4,7-disubstituted naphthoic acid derivatives as UDP-competitive antagonists of P2Y14. Bioorg Med Chem Lett. 2011;21(10):2836–2839. doi: 10.1016/j.bmcl.2011.03.081
  • Ko H, Fricks I, Ivanov A A, et al. Structure-activity relationship of uridine 5’-diphosphoglucose analogues as agonists of the human P2Y14 receptor. J Med Chem. 2007;50(9):2030–2039. doi: 10.1021/jm061222w
  • Zhang K, Zhang J, Gao Z-G, et al. Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature. 2014;509(7498):115–118. doi: 10.1038/nature13083
  • Zhang J, Zhang K, Gao Z-G, et al. Agonist-bound structure of the human P2Y12 receptor. Nature. 2014;509(7498):119–122. doi: 10.1038/nature13288
  • Kiselev E, Barrett M O, Katritch V, et al. Exploring a 2-Naphthoic Acid Template for the Structure-Based Design of P2Y14 Receptor Antagonist Molecular Probes. ACS Chem Biol. 2014;9(12):2833–2842. doi: 10.1021/cb500614p
  • Müller C E, Namasivayam V. Recommended tool compounds and drugs for blocking P2X and P2Y receptors. Purinergic Signal. 2021;17(4):633–648. doi: 10.1007/s11302-021-09813-7
  • Robichaud J, Fournier J-F, Gagné S, et al. Applying the pro-drug approach to afford highly bioavailable antagonists of P2Y14. Bioorg Med Chem Lett. 2011;21(14):4366–4368. doi: 10.1016/j.bmcl.2010.12.113
  • Barrett M O, Sesma J I, Ball C B, et al. A Selective High-Affinity Antagonist of the P2Y14 Receptor Inhibits UDP-Glucose–Stimulated Chemotaxis of Human Neutrophils. Mol Pharmacol. 2013;84(1):41–49. doi: 10.1124/mol.113.085654 •• An excellent article reporting the structure of PPTN, useful for structure-based drug design.
  • Charifson PS, Walters WP. Acidic and basic drugs in medicinal chemistry: a perspective. J Med Chem. 2014;57(23):9701–9717. doi: 10.1021/jm501000a
  • Mufti F, Jung Y-H, Giancotti L A, et al. P2Y 14 Receptor Antagonists Reverse Chronic Neuropathic Pain in a Mouse Model. ACS Medicinal Chem Lett. 2020;11(6):1281–1286. doi: 10.1021/acsmedchemlett.0c00115
  • Salvemini D, Jacobson K A, inventors; Univ Saint Louis; Us Health, assignee. Treatment and Prevention of Neuropathic Pain with P2y14 Antagonists. Patent US2021024489A1; 2021.
  • Jung Y-H, Yu J, Wen Z, et al. Exploration of alternative scaffolds for P2Y 14 receptor antagonists containing a biaryl core. J Med Chem. 2020;63(17):9563–9589. doi: 10.1021/acs.jmedchem.0c00745
  • Jacobson K a, Jung Y-H, Wen Z, inventors; Us Health; Jacobson Kenneth a; Jung Young Hwan; Wen Zhiwei, assignee. Heterocyclic P2y 14 Receptor Antagonists. Patent WO2022155037A1; 2022.
  • Wen Z, Salmaso V, Jung Y-H, et al. Bridged Piperidine Analogues of a high affinity naphthalene-based P2Y 14 R antagonist. J Med Chem. 2022;65(4):3434–3459. doi: 10.1021/acs.jmedchem.1c01964
  • Breton S, inventor; Kantum Diagnostics Inc, assignee. Methods of Monitoring, Treating, and Preventing Renal Inflammation Associated with Infection. Patent WO2019212935A1; 2019.
  • Wen Z, Pramanik A, Lewicki S A, et al. Alicyclic Ring Size Variation of 4-Phenyl-2-naphthoic Acid Derivatives as P2Y 14 Receptor Antagonists. J Med Chem. 2023;66(13):9076–9094. doi: 10.1021/acs.jmedchem.3c00664 • An updated study on the P2YR inhibitor development.
  • Jung Y-H, Salmaso V, Wen Z, et al. Structure-Activity Relationship of Heterocyclic P2Y14 Receptor Antagonists: Removal of the Zwitterionic Character with Piperidine Bioisosteres. J Med Chem. 2021;64(8):5099–5122. doi: 10.1021/acs.jmedchem.1c00164
  • Yu J, Ciancetta A, Dudas S, et al. Structure-Guided Modification of Heterocyclic Antagonists of the P2Y 14 Receptor. J Med Chem. 2018;61(11):4860–4882. doi: 10.1021/acs.jmedchem.8b00168 • An interesting article on P2Y,4 inhibitors.
  • Zhang Z, Hao K, Li H, et al. Design, synthesis and anti-inflammatory evaluation of 3-amide benzoic acid derivatives as novel P2Y14 receptor antagonists. Eur J Med Chem. 2019;181:111564. doi: 10.1016/j.ejmech.2019.111564
  • Jiang C, Hu Q, Zhang Z, et al. inventors; Univ China Pharma, assignee. 3-acylamino benzoic acid derivatives as well as preparation method and medical application thereof. Patent CN109096177A; 2018.
  • Zhou M, Liu C, Guo Y, et al. HQL6 serves as a novel P2Y(14) receptor antagonist to ameliorate acute gouty arthritis through inhibiting macrophage pyroptosis. Int Immunopharmacol. 2023;114:109507. doi: 10.1016/j.intimp.2022.109507
  • Lu R, Wang Y, Liu C, et al. Design, synthesis and evaluation of 3-amide-5-aryl benzoic acid derivatives as novel P2Y(14)R antagonists with potential high efficiency against acute gouty arthritis. Eur J Med Chem. 2021;216:113313. doi: 10.1016/j.ejmech.2021.113313
  • Faria J V, Vegi P F, Miguita A G C, et al. Recently reported biological activities of pyrazole compounds. Bioorg Med Chem. 2017;25(21):5891–5903. doi: 10.1016/j.bmc.2017.09.035
  • Wang Y H, Zhou M Z, Ye T, et al. Discovery of a Series of 5-Amide-1H-pyrazole-3-carboxyl Derivatives as Potent P2Y(14)R Antagonists with Anti-Inflammatory Characters. J Med Chem. 2022;65(23):15967–15990. doi: 10.1021/acs.jmedchem.2c01632
  • Jiang C, Hu Q, Lu R, et al. inventors; Univ China Pharma, assignee. 5-amino-1H-pyrazole derivative as well as preparation method and medical application thereof. Patent CN111423377A; 2020.
  • Junker A, Balasubramanian R, Ciancetta A, et al. Structure-based design of 3-(4-aryl-1H-1,2,3-triazol-1-yl)-biphenyl derivatives as P2Y14 receptor antagonists. J Med Chem. 2016;59(13):6149–6168. doi: 10.1021/acs.jmedchem.6b00044
  • Lu R, Zhang Z, Jiang C. Recent progress on the discovery of P2Y(14) receptor antagonists. Eur J Med Chem. 2019;175:34–39. doi: 10.1016/j.ejmech.2019.04.068 • An interesting review on P2Y.R inhibitors.
  • Jacobson K a, Junker A, Uliassi E, et al. inventors; Us Health, assignee. Triazole Derivatives as P2y14 Receptor Antagonists. Patent WO2017053769 A1; 2017.
  • Breton S, inventor; Kantum Diagnostics Inc, assignee. Methods of Monitoring, Treating, and Preventing Renal Inflammation Associated with Nephrotoxicity. Patent WO2019236777A1; 2019.
  • Breton S, inventor; Kantum Diagnostics Inc, assignee. Methods of Monitoring Treating, and Preventing Renal Inflammation Following Cardiac Procedures or Events. Patent WO2019204289A1; 2019.
  • Breton S, inventor; Kantum Diagnostics Inc, assignee. Methods of Monitoring, Treating, and Preventing Renal Inflammation Associated with Kidney Transplantation. Patent WO2019204283A1; 2019.
  • Zificsak CA, Hlasta DJ. Current methods for the synthesis of 2-substituted azoles. Tetrahedron. 2004;60(41):8991–9016. doi: 10.1016/j.tet.2004.07.016
  • Davies J R, Kane P D, Moody C J. N-H insertion reactions of rhodium carbenoids. Part 5: A convenient route to 1,3-azoles. Tetrahedron. 2004;60(18):3967–3977. doi: 10.1016/j.tet.2004.03.037
  • Valente S, Tomassi S, Tempera G, et al. Novel reversible monoamine oxidase a inhibitors: highly potent and selective 3-(1H-pyrrol-3-yl)-2-oxazolidinones. J Med Chem. 2011;54(23):8228–8232. doi: 10.1021/jm201011x
  • Chimenti F, Maccioni E, Secci D, et al. Synthesis, stereochemical identification, and selective inhibitory activity against human monoamine oxidase-B of 2-Methylcyclohexylidene-(4-arylthiazol-2-yl)hydrazones. J Med Chem. 2008;51(16):4874–4880. doi: 10.1021/jm800132g
  • Chimenti F, Fioravanti R, Bolasco A, et al. Monoamine oxidase isoform-dependent tautomeric influence in the recognition of 3,5-diaryl pyrazole inhibitors. J Med Chem. 2007;50(3):425–428. doi: 10.1021/jm060868l
  • La Regina G, Silvestri R, Artico M, et al. New pyrrole inhibitors of monoamine oxidase: synthesis, biological evaluation, and structural determinants of MAO-A and MAO-B selectivity. J Med Chem. 2007;50(5):922–931. doi: 10.1021/jm060882y
  • Maccioni E, Alcaro S, Cirilli R, et al. 3-Acetyl-2,5-diaryl-2,3-dihydro-1,3,4-oxadiazoles: a new scaffold for the selective inhibition of monoamine oxidase B. J Med Chem. 2011;54(18):6394–6398. doi: 10.1021/jm2002876
  • Chimenti F, Secci D, Bolasco A, et al. Synthesis, molecular modeling studies, and selective inhibitory activity against monoamine oxidase of N,N′-bis[2-oxo-2H-benzopyran]-3-carboxamides. Bioorg Med Chem Lett. 2006;16(15):4135–4140. doi: 10.1016/j.bmcl.2006.04.026
  • Liu Z Z, Zhao T Q, Li Z H, et al. Discovery of [1,2,3]triazolo[4,5-d]pyrimidine derivatives as highly potent, selective, and cellularly active USP28 inhibitors. Acta Pharmacol Sin B. 2020;10(8):1476–1491. doi: 10.1016/j.apsb.2019.12.008
  • Fu D-J, Li P, Wu B-W, et al. Molecular diversity of trimethoxyphenyl-1,2,3-triazole hybrids as novel colchicine site tubulin polymerization inhibitors. Eur J Med Chem. 2019;165:309–322. doi: 10.1016/j.ejmech.2019.01.033
  • Lu R, Zhang Z, Jiang C. Recent progress on the discovery of P2Y14 receptor antagonists. Eur J Med Chem. 2019;175:34–39. doi: 10.1016/j.ejmech.2019.04.068
  • Mufti F, Jung Y H, Giancotti L A, et al. P2Y(14) Receptor Antagonists Reverse Chronic Neuropathic Pain in a Mouse Model. ACS Med Chem Lett. 2020;11(6):1281–1286. doi: 10.1021/acsmedchemlett.0c00115
  • Yu J, Ciancetta A, Dudas S, et al. Structure-Guided Modification of Heterocyclic Antagonists of the P2Y(14) Receptor. J Med Chem. 2018;61(11):4860–4882. doi: 10.1021/acs.jmedchem.8b00168
  • Zhang Y, Xu L, Zhang Y, et al. Discovery of novel MIF inhibitors that attenuate microglial inflammatory activation by structures-based virtual screening and in vitro bioassays. Acta Pharmacol Sin. 2022;43(6):1508–1520. doi: 10.1038/s41401-021-00753-x
  • Zhu J, Wu Y, Wang M, et al. Integrating Machine Learning-Based Virtual Screening With Multiple Protein Structures and Bio-Assay Evaluation for Discovery of Novel GSK3β Inhibitors. Front pharmacol. 2020;11:566058. doi: 10.3389/fphar.2020.566058
  • Hu Q, Li H, Zhou M, inventors; Univ China Pharma, assignee. Application of 2,2-(4-carboxyl octanamide group)methyl benzoate to preparation of drugs for treating inflammatory diseases. Patent CN109568304A; 2019.
  • Wang W, Liu C, Li H, et al. Discovery of novel and potent P2Y14R antagonists via structure-based virtual screening for the treatment of acute gouty arthritis. J Adv Res. 2020;23:133–142. doi: 10.1016/j.jare.2020.02.007 .
  • Huang J, Zhou Z, Zhou M, et al. Development of benzoxazole deoxybenzoin oxime and acyloxylamine derivatives targeting innate immune sensors and xanthine oxidase for treatment of gout. Bioorg Med Chem. 2018;26(8):1653–1664. doi: 10.1016/j.bmc.2018.02.013
  • Li H, Hu Q, Zhu Y, et al., inventors; Univ Soochow, assignee. Benzoxazole derivative as well as preparation method and application thereof. Patent CN114805236A; 2022.
  • Zhou M, Wang W, Wang Z, et al. Discovery and computational studies of 2-phenyl-benzoxazole acetamide derivatives as promising P2Y14R antagonists with anti-gout potential. Eur J Med Chem. 2022;227:113933. doi: 10.1016/j.ejmech.2021.113933 •• Another interesting article on P2Y,4 inhibitors.
  • Li H, Hu Q, Wang W, et al., inventors; Univ Suzhou, assignee. Benzoxazole derivative and preparation method and application thereof. Patent CN109574949A; 2019.
  • Li H, Wang W, Hu Q, et al., inventors; Univ Suzhou, assignee. Benzoxazole derivative, and preparation method and application thereof. Patent CN110885318A; 2020.
  • Hu Q, Li H, Liu C, inventors; Univ China Pharma, assignee. Benzofuran small-molecule P2Y receptor inhibitor and preparation and application thereof. Patent CN110776486A; 2020.
  • Tian S, Wang, J M, Li, Y Y, et al. The application of drug-likeness predictions in pharmaceutical research. Adv Drug Deliv Rev. 2015;86:2–10. doi: 10.1016/j.addr.2015.01.009
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770–803. doi: 10.1021/acs.jnatprod.9b01285
  • Atanasov, A G, Zotchev, S B, Dirsch, V M, et al. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20(3):200–216. doi: 10.1038/s41573-020-00114-z
  • Tian S, Wang J, Li Y, et al. The application of in silico drug-likeness predictions in pharmaceutical research. Adv Drug Deliv Rev. 2015;86:2–10. doi: 10.1016/j.addr.2015.01.009
  • Tian S, Li Y, Wang J, et al. Drug-likeness analysis of traditional Chinese medicines: 2. Characterization of scaffold architectures for drug-like compounds, non-drug-like compounds, and natural compounds from traditional Chinese medicines. J Cheminformatics. 2013;5(1):5. doi: 10.1186/1758-2946-5-5
  • Tian S, Wang J, Li Y, et al. Drug-likeness analysis of traditional Chinese medicines: prediction of drug-likeness using machine learning approaches. Mol Pharm. 2012;9(10):2875–2886. doi: 10.1021/mp300198d
  • Shen M, Tian S, Li Y, et al. Drug-likeness analysis of traditional Chinese medicines: 1. property distributions of drug-like compounds, non-drug-like compounds and natural compounds from traditional Chinese medicines. J Cheminformatics. 2012;4(1):31. doi: 10.1186/1758-2946-4-31
  • Liu C, Zhou M, Jiang W, et al. GPR105-Targeted Therapy Promotes Gout Resolution as a Switch Between NETosis and Apoptosis of Neutrophils. Front Immunol. 2022;13:870183. doi: 10.3389/fimmu.2022.870183
  • Hu Q, Li H, Fang Y, et al., inventors; Univ China Pharma, assignee. Application of lobetyolin in preparation of medicine for treating diabetes. Patent CN113425734A; 2021.
  • Yang T, Kong B, Gu J W, et al. Anticonvulsant and sedative effects of paederosidic acid isolated from Paederia scandens (Lour.) Merrill. in mice and rats. Pharmacol Biochem Behav. 2013;111:97–101. doi: 10.1016/j.pbb.2013.08.015
  • Yu P, Shi L, Song M, et al. Antitumor activity of paederosidic acid in human non-small cell lung cancer cells via inducing mitochondria-mediated apoptosis. Chem Biol Interact. 2017;269:33–40. doi: 10.1016/j.cbi.2017.02.003
  • Li Y, Li Y, Zhu Y, et al. Structure-based virtual screening for discovery of paederosidic acid from Paederia scandens as novel P2Y14R antagonist. Phytomedicine. 2023;115:154851. doi: 10.1016/j.phymed.2023.154851 •• An excellent article reporting the discovery of paederosidic acid.
  • Xu J, Morinaga H, Oh D, et al. GPR105 ablation prevents inflammation and improves insulin sensitivity in mice with diet-induced obesity. J Immunol. 2012;189(4):1992–1999. doi: 10.4049/jimmunol.1103207
  • Harden T K, Sesma J I, Fricks I P, et al. Signalling and pharmacological properties of the P2Y receptor. Acta Physiol (Oxf). 2010;199(2):149–160. doi: 10.1111/j.1748-1716.2010.02116.x
  • Rupp M, Bauer M R, Wilcken R, et al. Machine learning estimates of natural product conformational energies. PLoS Comput Biol. 2014;10(1):e1003400. doi: 10.1371/journal.pcbi.1003400
  • Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. doi: 10.1038/s41586-021-03819-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.