85
Views
0
CrossRef citations to date
0
Altmetric
Review

Progress with polo-like kinase (PLK) inhibitors: a patent review (2018–present)

, , , , , ORCID Icon & ORCID Icon show all
Pages 789-806 | Received 01 Feb 2024, Accepted 04 Jul 2024, Published online: 15 Jul 2024

References

  • Xie Z, Yang X, Duan Y, et al. Small-molecule kinase inhibitors for the treatment of nononcologic diseases. J Med Chem. 2021;64(3):1283–1345. doi: 10.1021/acs.jmedchem.0c01511
  • Cohen P, Cross D, Jänne PA. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat Rev Drug Discov. 2021;20(7):551–569. doi: 10.1038/s41573-021-00195-4
  • Lee KS, Burke TR Jr., Park JE, et al. Recent advances and new strategies in targeting Plk1 for anticancer therapy. Trends Pharmacol Sci. 2015;36(12):858–877. doi: 10.1016/j.tips.2015.08.013
  • Zitouni S, Nabais C, Jana SC, et al. Polo-like kinases: structural variations lead to multiple functions. Nat Rev Mol Cell Biol. 2014;15(7):433–452. doi: 10.1038/nrm3819
  • Shakeel I, Basheer N, Hasan GM, et al. Polo-like kinase 1 as an emerging drug target: structure, function and therapeutic implications. J Drug Target. 2021;29(2):168–184. doi: 10.1080/1061186X.2020.1818760
  • Liao C, Yao R. Diversity evolution and jump of Polo-like kinase 1 inhibitors. Sci China Chem. 2013;56(10):1392–1401. doi: 10.1007/s11426-013-4963-0
  • Luo J, Emanuele MJ, Li D, et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell. 2009;137(5):835–848. doi: 10.1016/j.cell.2009.05.006
  • Palmisiano ND, Kasner MT. Polo-like kinase and its inhibitors: ready for the match to start? Am J Hematol. 2015;90(11):1071–1076. doi: 10.1002/ajh.24177
  • Zhang J, Zhang L, Wang J, et al. Polo-like kinase 1 inhibitors in human cancer therapy: development and therapeutic potential. J Med Chem. 2022;65(15):10133–10160. doi: 10.1021/acs.jmedchem.2c00614
  • Iliaki S, Beyaert R, Afonina IS. Polo-like kinase 1 (PLK1) signaling in cancer and beyond. Biochem Pharmacol. 2021;193:114747. doi: 10.1016/j.bcp.2021.114747
  • Pohl MO, von Recum-Knepper J, Rodriguez-Frandsen A, et al. Identification of polo-like kinases as potential novel drug targets for influenza a virus. Sci Rep. 2017;7(1):8629. doi: 10.1038/s41598-017-08942-7
  • Zhang C, Ni C, Lu H. Polo-like kinase 2: from principle to practice. Front Oncol. 2022;12:956225. doi: 10.3389/fonc.2022.956225
  • Lee JS, Lee Y, André EA, et al. Inhibition of polo-like kinase 2 ameliorates pathogenesis in Alzheimer’s disease model mice. PLOS ONE. 2019;14(7):e0219691. doi: 10.1371/journal.pone.0219691
  • Coley HM, Hatzimichael E, Blagden S, et al. Polo like kinase 2 tumour suppressor and cancer biomarker: new perspectives on drug sensitivity/resistance in ovarian cancer. Oncotarget. 2012;3(1):78–83. doi: 10.18632/oncotarget.332
  • Ding Y, Liu H, Zhang C, et al. Polo-like kinases as potential targets and PLK2 as a novel biomarker for the prognosis of human glioblastoma. Aging (Albany NY). 2022;14:2320–2334. doi: 10.18632/aging.203940
  • Helmke C, Becker S, Strebhardt K. The role of Plk3 in oncogenesis. Oncogene. 2016;35(2):135–147. doi: 10.1038/onc.2015.105
  • Ren C, Chen T, Zhang S, et al. PLK3 facilitates replication of swine influenza virus by phosphorylating viral NP protein. Emerg Microbes Infect. 2023;12(2):2275606. doi: 10.1080/22221751.2023.2275606
  • Zhao Y, Wang X. PLK4: a promising target for cancer therapy. J Cancer Res Clin Oncol. 2019;145(10):2413–2422. doi: 10.1007/s00432-019-02994-0
  • Shu Y, Liu Y, Bian S, et al. Discovery of polo-like kinase 4 inhibitors for the treatment of cancer: a mini patent review. Mini Rev Med Chem. 2023;23(1):67–79. doi: 10.2174/1381612828666220603124115
  • Lei Q, Yu Q, Yang N, et al. Therapeutic potential of targeting polo-like kinase 4. Eur J Med Chem. 2024;265:116115. doi: 10.1016/j.ejmech.2023.116115
  • Meitinger F, Ohta M, Lee KY, et al. TRIM37 controls cancer-specific vulnerability to PLK4 inhibition. Nature. 2020;585(7825):440–446. doi: 10.1038/s41586-020-2710-1
  • de Cárcer G, Manning G, Malumbres M, et al. From Plk1 to Plk5: functional evolution of polo-like kinases. Cell Cycle. 2011;10(14):2255–2262. doi: 10.4161/cc.10.14.16494
  • Su S, Ndiaye MA, Guzmán-Pérez G, et al. Potential tumor suppressor role of polo-like kinase 5 in cancer. Cancers (Basel). 2023;15(22):5457. doi: 10.3390/cancers15225457
  • Zhang Z, Xing X, Guan P, et al. Recent progress in agents targeting polo-like kinases: promising therapeutic strategies. Eur J Med Chem. 2021;217:113314. doi: 10.1016/j.ejmech.2021.113314
  • Xu J, Shen C, Wang T, et al. Structural basis for the inhibition of polo-like kinase 1. Nat Struct Mol Biol. 2013;20(9):1047–1053. doi: 10.1038/nsmb.2623
  • Steegmaier M, Hoffmann M, Baum A, et al. BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr Biol. 2007;17(4):316–322. doi: 10.1016/j.cub.2006.12.037
  • Awad MM, Chu QS, Gandhi L, et al. An open-label, phase II study of the polo-like kinase-1 (plk-1) inhibitor, BI 2536, in patients with relapsed small cell lung cancer (SCLC). Lung Cancer. 2017;104:126–130. doi: 10.1016/j.lungcan.2016.12.019
  • Döhner H, Symeonidis A, Deeren D, et al. Adjunctive volasertib in patients with acute myeloid leukemia not eligible for standard induction therapy: a randomized, phase 3 trial. Hemasphere. 2021;5(8):e617. doi: 10.1097/HS9.0000000000000617
  • Hikichi Y, Honda K, Hikami K, et al. TAK-960, a novel, orally available, selective inhibitor of polo-like kinase 1, shows broad-spectrum preclinical antitumor activity in multiple dosing regimens. Mol Cancer Ther. 2012;11(3):700–709. doi: 10.1158/1535-7163.MCT-11-0762
  • Emmitte KA, Andrews CW, Badiang JG, et al. Discovery of thiophene inhibitors of polo-like kinase. Bioorg Med Chem Lett. 2008;19(3):1018–1021. doi: 10.1016/j.bmcl.2008.11.041
  • Olmos D, Barker D, Sharma R, et al. Phase I study of GSK461364, a specific and competitive polo-like kinase 1 inhibitor, in patients with advanced solid malignancies. Clin Cancer Res. 2011;17(10):3420–3430. doi: 10.1158/1078-0432.CCR-10-2946
  • Gumireddy K, Reddy MV, Cosenza SC, et al. ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell. 2005;7(3):275–286. doi: 10.1016/j.ccr.2005.02.009
  • Monfort-Vengut A, de Cárcer G. Lights and shadows on the cancer multi-target inhibitor Rigosertib (ON-01910.Na). Pharmaceutics. 2023;15:1232. doi: 10.3390/pharmaceutics15041232
  • Takagi M, Honmura T, Watanabe S, et al. In vivo antitumor activity of a novel sulfonamide, HMN-214, against human tumor xenografts in mice and the spectrum of cytotoxicity of its active metabolite, HMN-176. Invest New Drugs. 2003;21(4):387–399. doi: 10.1023/A:1026282716250
  • Garland LL, Taylor C, Pilkington DL, et al. A phase I pharmacokinetic study of HMN-214, a novel oral stilbene derivative with polo-like kinase-1–Interacting properties, in patients with advanced solid tumors. Clin Cancer Res. 2006;12(17):5182–5189. doi: 10.1158/1078-0432.CCR-06-0214
  • Beria I, Bossi RT, Brasca MG, et al. NMS-P937, a 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivative as potent and selective Polo-like kinase 1 inhibitor. Bioorg Med Chem Lett. 2011;21(10):2969–2674. doi: 10.1016/j.bmcl.2011.03.054
  • Valsasina B, Beria I, Alli C, et al. NMS-P937, an orally available, specific small-molecule polo-like kinase 1 inhibitor with antitumor activity in solid and hematologic malignancies. Mol Cancer Ther. 2012;11(4):1006–1016. doi: 10.1158/1535-7163.MCT-11-0765
  • Hagege A, Ambrosetti D, Boyer J, et al. The polo-like kinase 1 inhibitor onvansertib represents a relevant treatment for head and neck squamous cell carcinoma resistant to cisplatin and radiotherapy. Theranostics. 2021;11(19):9571–9586. doi: 10.7150/thno.61711
  • El Dika I, Lim HY, Yong WP, et al. An open-label, multicenter, phase I, dose escalation study with phase II expansion cohort to determine the safety, pharmacokinetics, and preliminary antitumor activity of intravenous TKM-080301 in subjects with advanced hepatocellular carcinoma. Oncologist. 2019;24(6):747–e218. doi: 10.1634/theoncologist.2018-0838
  • Stafford JM, Wyatt MD, McInnes C. Inhibitors of the PLK1 polo-box domain: drug design strategies and therapeutic opportunities in cancer. Expert Opin Drug Discov. 2023;18(1):65–81. doi: 10.1080/17460441.2023.2159942
  • Chapagai D, Merhej G, McInnes C, et al. Structural basis for variations in polo-like kinase 1 conformation and intracellular stability induced by ATP-Competitive and novel noncompetitive abbapolin inhibitors. ACS Chem Biol. 2023;18(7):1642–1652. doi: 10.1021/acschembio.3c00269
  • Yun SM, Moulaei T, Lim D, et al. Structural and functional analyses of minimal phosphopeptides targeting the polo-box domain of polo-like kinase 1. Nat Struct Mol Biol. 2009;16(8):876–882. doi: 10.1038/nsmb.1628
  • Scharow A, Raab M, Saxena K, et al. Optimized Plk1 PBD inhibitors based on poloxin induce mitotic arrest and apoptosis in tumor cells. ACS Chem Biol. 2015;10(11):2570–2579. doi: 10.1021/acschembio.5b00565
  • Aubele DL, Hom RK, Adler M, et al. Selective and brain-permeable polo-like kinase-2 (plk-2) inhibitors that reduce α-synuclein phosphorylation in rat brain. ChemMedchem. 2013;8(8):1295–1313. doi: 10.1002/cmdc.201300166
  • Martínez-Drudis L, Sheta R, Pellegrinato R, et al. Inhibition of PLK2 activity affects APP and tau pathology and improves synaptic content in a sex-dependent manner in a 3xTg mouse model of Alzheimer’s disease. Neurobiol Dis. 2022;172:105833. doi: 10.1016/j.nbd.2022.105833
  • Zhan MM, Yang Y, Luo J, et al. Design, synthesis, and biological evaluation of novel highly selective polo-like kinase 2 inhibitors based on the tetrahydropteridin chemical scaffold. Eur J Med Chem. 2018;143:724–731. doi: 10.1016/j.ejmech.2017.11.058
  • Rössler J, Monnet Y, Farace F, et al. The selective VEGFR1-3 inhibitor axitinib (AG-013736) shows antitumor activity in human neuroblastoma xenografts. Int J Cancer. 2011;128(11):2748–2758. doi: 10.1002/ijc.25611
  • Liu JJ, Higgins B, Ju G, et al. Discovery of a highly potent, orally active mitosis/angiogenesis inhibitor r1530 for the treatment of solid tumors. ACS Med Chem Lett. 2013;4(2):259–263. doi: 10.1021/ml300351e
  • Shanghai De Novo Pharmatech co. Ltd. Pyrazolo[3, 4-d]pyrimidin-3-one derivative, and pharmaceutical composition and application thereof. CN113387962 A. 2021.
  • Vakili-Samiani S, Turki Jalil A, Abdelbasset WK, et al. Targeting Wee1 kinase as a therapeutic approach in hematological malignancies. DNA Repair (Amst). 2021;107:103203. doi: 10.1016/j.dnarep.2021.103203
  • Medshine Discovery Inc. 5,6-dihydrothieno[3,4-H]quinazoline compound. WO2022166725 A1. 2022.
  • Wuhan Yuxiang Pharmaceutical. Tri-fused ring compound as well as pharmaceutical composition and application thereof. CN114685520 A. 2022.
  • Newsoara Biopharma Co. Pyrazoloquinazoline compound, and preparation method therefor and use thereof. WO2022143576 A1. 2022.
  • Wuhan Yuxiang Pharmaceutical Technology Co. Ltd. Preparation of tricyclic compounds as PLK1 inhibitors. CN116410206 A. 2023.
  • Shandong Luye Pharmaceutical Co. Ltd. Protein kinase inhibitor, preparation method therefor, and application thereof. WO2023104178 Al. 2023.
  • Sillajen, Inc. Pharmaceutical combinations containing TTK/PLK1 inhibitor for treating neoplastic diseases. WO2023167549 A1. 2023.
  • Shandong Luye Pharmaceutical Co. Preparation of piperazine-based compounds as PLK1 kinase inhibitor. CN115819418 A. 2023.
  • Shanghai Shenshi Weisi Technology Co. Ltd. Preparation of (dihydroisoindolyl)(piperazinyl)phenylarylamines as PLK1 inhibitors. CN117658987 A. 2024.
  • Beijing Xinkaiyuan Pharmaceutical Technology Co. Ltd. 4H-Pyrano[2,3-c]pyridin-4-one compounds pharmaceutical preparation and preparation method and application thereof as PLK1 inhibitor in the preparation of drugs for tumor treatment. CN114392258 A. 2022.
  • Sentinel Oncology Limited. Pyrrole derivatives as PLK1 inhibitors. WO2018197714 A1. 2018.
  • University of South Carolina. Abbapolins as inhibitors and degraders of polo-like kinases. US20230338316 A1. 2023.
  • Department of Health and Human Services, USA. PLK1 polo box domain inhibitor and method of treating cancer. WO2022067100 A2. 2022.
  • Guangxi Normal University. Preparation of sulfonamide derivative PLK1 inhibitor and its application. CN116836116 A. 2023.
  • Department of Health and Human Services, USA. Peptide and peptide mimetic binding antagonists of polo-like kinase 1 polo box domain and methods of use. US20180296686 A1. 2018.
  • Hymel D, Grant RA, Tsuji K, et al. Histidine N(τ)-cyclized macrocycles as a new genre of polo-like kinase 1 polo-box domain-binding inhibitors. Bioorg Med Chem Lett. 2018;28(19):3202–3205. doi: 10.1016/j.bmcl.2018.08.018
  • Bhole RP, Kute PR, Chikhale RV, et al. Unlocking the potential of PROTACs: a comprehensive review of protein degradation strategies in disease therapy. Bioorg Chem. 2023;139:106720. doi: 10.1016/j.bioorg.2023.106720
  • Jilin University, China. Compound capable of degrading PLK1 and BRD4 proteins, and applications thereof. CN109879877. 2019.
  • Uppthera Inc. PLK1 selective degradation inducing compound. WO2021194318 A1. 2021.
  • Uppthera Inc. Vanillin derivative compounds inducing selective degradation of PLK1. WO2021194319 A1. 2021.
  • Uppthera Inc. Derivative compounds inducing selective degradation of PLK1. WO2021194320 A1. 2021.
  • Uppthera Inc. Benzimidazole thiophene derivative compounds inducing selective degradation of PLK1. WO2021194321 A1. 2021.
  • Uppthera Inc. Novel PLK1 degradation inducing compound. WO2023018237 A1. 2023.
  • Uppthera Inc. Novel PLK1 degradation inducing compound. WO2023017446 A1. 2023.
  • Uppthera Inc. Preparation of pteridinone as PLK1 protein degradation-inducing compound. WO2023277583 A1. 2023.
  • Uppthera Inc. Novel PLK1 degradation inducing pyrimidodiazepine compounds and their preparation. WO2023018238 A1. 2023.
  • Uppthera Inc. Novel PLK1 degradation inducing pyrimidodiazepine compounds and their preparation. WO2023017442 A1. 2023.
  • Uppthera Inc. Novel PLK1 degradation inducing pyrimidodiazepine compounds and their preparation. WO2023018236 A1. 2023.
  • Rubner S, Scharow A, Schubert S, et al. Selective degradation of polo-like kinase 1 by a hydrophobically tagged inhibitor of the polo-box domain. Angew Chem Int Ed Engl. 2018;57(52):17043–17047. doi: 10.1002/anie.201809640
  • Gunasekaran P, Hwang YS, Lee GH, et al. Degradation of polo-like kinase 1 by the novel poly-arginine N-Degron pathway PROTAC regulates tumor growth in nonsmall cell lung cancer. J Med Chem. 2024;67(5):3307–3320. doi: 10.1021/acs.jmedchem.3c01493
  • Oric Pharmaceuticals. Polo like kinase 4 inhibitors. WO2022240876 A1. 2022.
  • Shanghai Qilu Pharmaceutical. PLK4 inhibitors and use thereof. WO2022184049 A1. 2022.
  • Repare Therapeutics Inc. Polo-like kinase 4 (PLK4) inhibitors, pharmaceutical compositions, method of preparation and uses thereof. WO2023159307 A1. 2023.
  • West China Hospital, Sichuan University. Pyrimidine derivative, preparation method thereof, application, and pharmaceutical composition. CN112225729 A. 2020.
  • Sun Y, Sun Y, Wang L, et al. Design, synthesis, and biological evaluation of novel pyrazolo [3,4-d]pyrimidine derivatives as potent PLK4 inhibitors for the treatment of TRIM37-amplified breast cancer. Eur J Med Chem. 2022;238:114424. doi: 10.1016/j.ejmech.2022.114424
  • Shenyang Pharmaceutical University. Pyrazolopyrimidine derivative as well as preparation method and application thereof. CN116023380 A. 2021.
  • Sun Y, Xue Y, Liu H, et al. Discovery of CZS-241: a potent, selective, and orally available polo-like kinase 4 inhibitor for the treatment of chronic myeloid leukemia. J Med Chem. 2023;66(4):2396–2421. doi: 10.1021/acs.jmedchem.2c02124
  • Sun Y, Wang L, Sun Y, et al. Structure-based discovery of 1-(3-fluoro-5-(5-(3-(methylsulfonyl)phenyl)-1H-pyrazolo[3,4-b]pyridin-3-yl)phenyl)-3-(pyrimidin-5-yl)urea as a potent and selective nanomolar type-II PLK4 inhibitor. Eur J Med Chem. 2022;243:114714. doi: 10.1016/j.ejmech.2022.114714
  • Shenyang Pharmaceutical University. Preparation of pyrazolopyridine derivatives as PLK4 inhibitors. CN117050072 A. 2022.
  • Sun Y, Xue Y, Sun P, et al. Discovery of the first potent, selective, and in vivo efficacious polo-like kinase 4 proteolysis targeting chimera degrader for the treatment of TRIM37-amplified breast cancer. J Med Chem. 2023;66(12):8200–8221. doi: 10.1021/acs.jmedchem.3c00505
  • Elsayed I, Wang X. PLK1 inhibition in cancer therapy: potentials and challenges. Future Med Chem. 2019;11(12):1383–1386. doi: 10.4155/fmc-2019-0084
  • Lv X, Yang X, Zhan MM, et al. Structure-based design and SAR development of novel selective polo-like kinase 1 inhibitors having the tetrahydropteridin scaffold. Eur J Med Chem. 2019;184:111769. doi: 10.1016/j.ejmech.2019.111769
  • Reinecke M, Brear P, Vornholz L, et al. Chemical proteomics reveals the target landscape of 1,000 kinase inhibitors. Nat Chem Biol. 2023;20(5):577–585. doi: 10.1038/s41589-023-01459-3
  • Su S, Chhabra G, Singh CK, et al. PLK1 inhibition-based combination therapies for cancer management. Transl Oncol. 2022;16:101332. doi: 10.1016/j.tranon.2021.101332
  • Oegema K, Davis RL, Lara-Gonzalez P, et al. CFI-400945 is not a selective cellular PLK4 inhibitor. Proc Natl Acad Sci USA. 2018;115(46):E10808–e10809. doi: 10.1073/pnas.1813310115
  • Gohda J, Suzuki K, Liu K, et al. BI-2536 and BI-6727, dual polo-like kinase/bromodomain inhibitors, effectively reactivate latent HIV-1. Sci Rep. 2018;8(1):3521. doi: 10.1038/s41598-018-21942-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.