0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Tetrahydroisoquinolines – an updated patent review for cancer treatment (2016 – present)

, , &
Received 01 May 2024, Accepted 08 Aug 2024, Accepted author version posted online: 10 Aug 2024
Accepted author version

References

  • Mandal R, Basu P. Cancer screening and early diagnosis in low and middle income countries. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz. 2018;61:1505–1512.
  • Tanwar AK, Dhiman N, Kumar A, et al. Engagement of phytoestrogens in breast cancer suppression: Structural classification and mechanistic approach. Eur J Med Chem. 2021;213:113037. 10.1016/j.ejmech.2020.113037
  • Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduction Targeted Ther. 2020;5:166.
  • Intlekofer AM, Finley LWS. Metabolic signatures of cancer cells and stem cells. Nat Metab. 2019;1(2):177–188. doi: 10.1038/s42255-019-0032-0
  • Collaboration GBoDC. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol. 2017;3:524–548.
  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin. 2021;71:209–249.
  • Bray F, Laversanne M, Weiderpass E, et al. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer. 2021;127(16):3029–3030. doi: 10.1002/cncr.33587
  • Sathishkumar K, Chaturvedi M, Das P, et al. Cancer incidence estimates for 2022 & projection for 2025: result from national cancer registry programme, India. Indian J Med Res. 2022;156(4):598–607. doi: 10.4103/ijmr.ijmr_1821_22
  • Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. Ca-Cancer J Clin. 2023;73:17–48.
  • Singh IP, Shah P. Tetrahydroisoquinolines in therapeutics: a patent review (2010-2015). Expert Opin Ther Pat. 2017;27(1):17–36. doi: 10.1080/13543776.2017.1236084
  • Sayed EM, Hassanien R, Farhan N, et al. Nitrophenyl group containing heterocycles. synthesis, characterization, crystal structure, anticancer activity, and antioxidant properties of some new 5,6,7,8-Tetrahydroisoquinolines bearing 3(4)-Nitrophenyl group. ACS Omega. 2022;7:8767–8776.
  • Scott JD, Williams RM. Chemistry and biology of the Tetrahydroisoquinoline antitumor antibiotics. Chem. Rev. 2002;102(5):1669–1730. doi: 10.1021/cr010212u
  • Tomita F, Takahashi K, Tamaoki T. Quinocarcin, a novel antitumor antibiotic 3. mode of action. J Antibiot. 1984;37:1268–1272.
  • Suzuki K, Sato T, Morioka M, et al.. Tetrazomine, a new antibiotic produced by an actinomycete strain. Taxonomy, fermentation, isolation and characterization. J. Antibiot. 1991;44(5):479–485. doi: 10.7164/antibiotics.44.479
  • Valoti G, Nicoletti MI, Pellegrino A, et al. Ecteinascidin-743, a new marine natural product with potent antitumor activity on human ovarian carcinoma xenografts. Clin Cancer Res. 1998;4:1977–1983.
  • Fontana A, Cavaliere P, Wahidulla S, et al.. A new antitumor isoquinoline alkaloid from the marine nudibranch Jorunna funebris. Tetrahedron. 2000;56(37):7305–7308. doi: 10.1016/S0040-4020(00)00629-3
  • Davidson, BS. Renieramycin G. A new alkaloid from the sponge Xestospongia caycedoi. Tetrahedron Lett. 1992;33:3721–3724.
  • Evans WC. Trease and Evans’ pharmacognosy. Elsevier Health Sciences. 2009;16th ed.:380–381
  • Dewick PM. Medicinal natural products, a biosynthetic approach. John Wiley & Sons. 2004;2nd ed.:322
  • Chandrasekhar S, Mohanty PK, Harikishan K, et al. Unexpected formation of 3-substituted 1,2,3,4-Tetrahydroisoquinolines during tosylation of N,N-dibenzylaminols. Org Lett. 1999;1:877–878.
  • Roddan R, Ward JM, Keep NH, et al. Pictet-spenglerases in alkaloid biosynthesis: future applications in biocatalysis. Curr Opin Chem Biol. 2020;55:69–76.
  • Awuah E, Capretta A. Strategies and synthetic methods directed toward the preparation of libraries of substituted isoquinolines. J Org Chem. 2010;75(16):5627–5634. doi: 10.1021/jo100980p
  • Le VH, Inai M, Williams RM, et al. Ecteinascidins: a review of the chemistry, biology and clinical utility of potent tetrahydroisoquinoline antitumor antibiotics. Nat Prod Rep. 2015;32:328–347.
  • Hasseri H, Preedakorn C, Khanit S, et al. Anticancer and antimetastatic activities of Renieramycin M, a marine tetrahydroisoquinoline alkaloid, in human non-small cell lung cancer cells. Anticancer Res. 2011;31:193.
  • Jett JR, Saijo N, Hong W-S, et al. The colony inhibition of a new chemotherapeutic agent (KW2152) against human lung cancer cell lines. Invest New Drugs. 1987;5(2):155–159. doi: 10.1007/BF00203540
  • Plowman J, Dykes DJ, Narayanan VL, et al. Efficacy of the quinocarmycins KW2152 and DX-52-1 against human melanoma lines growing in culture kand in mice. Cancer Res. 1995;55:862–867.
  • Molinski TF, Dalisay DS, Lievens SL, et al. Drug development from marine natural products. Nat Rev Drug Discov. 2009;8(1):69–85. doi: 10.1038/nrd2487
  • Cuevas C, Pérez M, Martín MJ, et al. Synthesis of ecteinascidin ET-743 and phthalascidin Pt-650 from cyanosafracin B. Org Lett. 2000;2(16):2545–2548. doi: 10.1021/ol0062502
  • Menchaca R, Martínez V, Rodríguez A, et al. Synthesis of natural ecteinascidins (ET-729, ET-745, ET-759B, ET-736, ET-637, ET-594) from cyanosafracin B. J Org Chem. 2003;68(23):8859–8866. doi: 10.1021/jo034547i
  • Sim S, Lee S, Ko S, et al. Design, synthesis, and biological evaluation of potent 1,2,3,4-tetrahydroisoquinoline derivatives as anticancer agents targeting NF-κB signaling pathway. Bioorg Med Chem. 2021;46:116371.
  • Chamduang C, Pingaew R, Prachayasittikul V, et al. Novel triazole-tetrahydroisoquinoline hybrids as human aromatase inhibitors. Bioorg Chem. 2019;93:103327. 10.1016/j.bioorg.2019.103327
  • Capilla AS, Soucek R, Grau L, et al. Substituted tetrahydroisoquinolines: synthesis, characterization, antitumor activity and other biological properties. Eur J Med Chem. 2018;145:51–63. 10.1016/j.ejmech.2017.12.098
  • Zhang Y, Feng J, Liu C, et al. Design, synthesis and preliminary activity assay of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives as novel histone deacetylases (HDACs) inhibitors. Bioorg Med Chem. 2010;18(5):1761–1772. doi: 10.1016/j.bmc.2010.01.060
  • Chen D, Shen A, Fang G, et al. Tetrahydroisoquinolines as novel histone deacetylase inhibitors for treatment of cancer. Acta Pharm Sin B. 2016;6(1):93–99. doi: 10.1016/j.apsb.2015.11.002
  • Zhang Y, Feng J, Jia Y, et al. Development of Tetrahydroisoquinoline-based hydroxamic acid derivatives: potent histone deacetylase inhibitors with marked in vitro and in vivo antitumor activities. J Med Chem. 2011;54(8):2823–2838. doi: 10.1021/jm101605z
  • Palmieri C, Patten DK, Januszewski A, et al. Breast cancer: current and future endocrine therapies. Mol Cell Endocrinol. 2014;382(1):695–723. doi: 10.1016/j.mce.2013.08.001
  • Patel HK, Bihani T Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol Ther. 2018;186:1–24. 10.1016/j.pharmthera.2017.12.012
  • F Hoffmann, La Roche, AG. Tetrahydroisoquinoline estrogen receptor modulators and uses thereof. CN109219604B. January 2019.
  • Florida Agricultural and Mechanical University. Substituted tetrahydroisoquinoline ethylbenzamide anti-cancer agents. US20190100495A1. August 2020.
  • Nguyen HP, Le AQ, Liu E, et al. Corrigendum: Protein arginine methyltransferase 1 is a therapeutic vulnerability in multiple myeloma. Front Immunol. 2023;14:1–17. 10.3389/fimmu.2023.1334733
  • Yang Y, Bedford MT. Protein arginine methyltransferases and cancer. Nat Rev Cancer. 2013;13(1):37–50. doi: 10.1038/nrc3409
  • Hwang JW, Cho Y, Bae G-U, et al. Protein arginine methyltransferases: promising targets for cancer therapy. Exp Mol Med. 2021;53(5):788–808. doi: 10.1038/s12276-021-00613-y
  • Epizyme Inc. PRMT5 inhibitors and uses thereof. US20140213582A1. June 2016..
  • University of Jinan. Preparation and application of sulfanilamide and benzothiazole compounds containing tetrahydroisoquinoline. CN110950801A. April 2020.
  • Jubilant Episcribe LLC. Heterocyclic compounds as PRMT5 inhibitors. EP3704120B1. March 2024.
  • Bayer Pharma AG. Thiazole compounds useful as PRMT5 inhibitors. US20200123147A1. April 2020.
  • SK Biopharmaceuticals Co Ltd. Bicyclic compounds and uses thereof. CN114945562A. August 2022.
  • Shanghai Yishi Pharmaceutical Technology Co ltd. Compound with anti-tumor activity and application thereof. CN116113626A. May 2023..
  • Zhao H, Ming T, Tang S, et al. Wnt signaling in colorectal cancer: pathogenic role and therapeutic target. Mol Cancer. 2022;21(1):144. doi: 10.1186/s12943-022-01616-7
  • Biosplice Therapeutics Inc. Isoquinolin-3-yl carboxamides and preparation and use thereof. EP3448386B1. March 2021.
  • Fitzgerald AA, Weiner LM. The role of fibroblast activation protein in health and malignancy. Cancer Metastasis Rev. 2020;39(3):783–803. doi: 10.1007/s10555-020-09909-3
  • Praxis Biotech LLC. Inhibitors of Fibroblast Activation. US011504364B2. November 2022.
  • Kügler S, Straten G, Kreppel F, et al. The X-linked inhibitor of apoptosis (XIAP) prevents cell death in axotomized CNS neurons in vivo. Cell Death Differ. 2000;7(9):815–824. doi: 10.1038/sj.cdd.4400712
  • Chaudhary AK, Yadav N, Bhat TA, et al. A potential role of X-linked inhibitor of apoptosis protein in mitochondrial membrane permeabilization and its implication in cancer therapy. Drug Discov Today. 2016;21(1):38–47. doi: 10.1016/j.drudis.2015.07.014
  • Kim KS, Zhang L, Williams D, et al.. Discovery of tetrahydroisoquinoline-based bivalent heterodimeric IAP antagonists. Bioorganic & Medicinal Chemistry Letters. 2014;24(21):5022–5029. doi: 10.1016/j.bmcl.2014.09.022
  • Bristol Myers Squibb Co. 1,2,3,4-Tetrahydroisoquinoline-pyrrolidine derivatives as antagonists of apoptosis (IAPs) for the treatment of cancer. EP2861581B1. August 2017.
  • AbbVie Inc. 8-carbamoyl-2-(2,3-disubstituted pyrid-6-yl)-1,2,3,4-tetrahydroisoquinoline derivatives as apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases. EP2766361B1. August 2016.
  • Walter and Eliza Hall Institute of Medical Research, Genentech Inc, and AbbVie Inc. Tetrahydroisoquinoline derivatives and their uses to treat cancers and autoimmune disorders. CA2747170C. July 2017.
  • Treeline Biosciences, Inc. Tetrahydroisoquinoline heterobifunctional Bcl-xl degraders. WO2023215471A1. November 2023.
  • Evan J. Horn, Joshua D, Hansen, Matthew D, Alexander Fei Huang, Mark A, Nagy. Tetrahydroisoquinoline heterobifunctional Bcl-xl degraders. WO2023215482A1. November 2023.
  • Karlsson E, Veenstra C, Emin S, et al. Loss of protein tyrosine phosphatase, non-receptor type 2 is associated with activation of AKT and tamoxifen resistance in breast cancer. Breast Cancer Res Treat. 2015;153(1):31–40. doi: 10.1007/s10549-015-3516-y
  • AbbVie Inc & Calico Life Sciences LLC. Protein tyrosine phosphatase inhibitors and methods of use thereof. JP2023052094A. October 2023.
  • Karimaa M, Riikonen R, Kettunen H, et al. First in class small molecule to inhibit CYP11A1 and steroid hormone biosynthesis. Mol Cancer Ther. 2022;21:1765–1776.
  • Orion Oyj. Pyran derivatives as CYP11a1 (cytochrome p450 monooxygenase 11a1) inhibitors. EP3558981B1. May 2021.
  • Eisai R&D Management Co Ltd. PPARγ modulator and usage method. JP2023549123A. November 2023.
  • Anyetei ACS, Roggero VR, Allison LA. Thyroid hormone receptor localization in target tissues. J Endocrinol. 2018;237:19–34.
  • Sunshine Lake Pharma Co Ltd. Compounds as thyroid hormone β receptor agonists and uses thereof. KR20230069991A. May 2023.
  • Ling P, Meyer CF, Redmond LP, et al. Involvement of hematopoietic progenitor kinase 1 in T cell receptor signaling. J Biol Chem. 2001;276(22):18908–18914. doi: 10.1074/jbc.M101485200
  • Linney ID, Kaila N. Inhibitors of immuno-oncology target HPK1 – a patent review (2016 to 2020). Expert Opin Ther Pat. 2021;31(10):893–910. doi: 10.1080/13543776.2021.1924671
  • Ariad Pharmaceuticals, Inc. Anilinopyrimidines as haematopoietic progenitor kinase 1 (hpk1) inhibitors. WO2018102366A1. November 2017.
  • Incyte Corporation. Pyrazolopyrimidine derivatives as HPK1 modulators and uses thereof for the treatment of cancer. WO2018049152A1. March 2018.
  • Beigene Ltd. Aminopyrazine compounds as HPK1 inhibitor and the use thereof. TW202115025A. April 2021.
  • Merck Sharp and Dohme LLC. Diaminopyrimidine carboxamide inhibitors of HPK1. US20230416225A1. December 2023.
  • Yang P, Zhang J. Indoleamine 2,3-dioxygenase (IDO) activity: a perspective biomarker for laboratory determination in tumor immunotherapy. Biomedicines. 2023;11(7):1988. doi: 10.3390/biomedicines11071988
  • Syngene International Ltd & Bristol Myers Squibb Co. Inhibitors of indoleamine 2,3-dioxygenase and methods of their use. US20210299126A1. January 2021.
  • Hartley A, Leung HY, Ahmad I. Targeting the BAF complex in advanced prostate cancer. Expert Opin. Drug Discovery. 2021;16:173–181.
  • Foghorn Therapeutics Inc. Compounds and their use. JP2022523074A. February 2023.
  • Zhang DD. Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev. 2006;38(4):769–789. doi: 10.1080/03602530600971974
  • Jaramillo MC, Zhang DD. The emerging role of the Nrf2–Keap1 signaling pathway in cancer. Genes Dev. 2013;27(20):2179–2191. doi: 10.1101/gad.225680.113
  • C4X Discovery Ltd. Tetrahydroisoquinoline compounds as Nrf2 activators. CA3174360A1. October 2021.
  • Shapiro GI. Cyclin dependent kinase pathways as targets for cancer treatment. J Clin Oncol. 2006;24:1770–1783.
  • Toogood PL. Cyclin-dependent kinase inhibitors for treating cancer. Med Res Rev. 2001;21(6):487–498. doi: 10.1002/med.1021
  • Jiangsu Vcare Pharmatech Co Ltd. 2-aminopyrimidine derivatives as kinase inhibitors, preparation and use thereof. CN116332910A. June 2023.
  • Voronoi Bio Co. Ltd. Isoxazolidine derivative compound and use thereof. WO2022131741A1. June 2022.
  • Kloog Y, Cox AD. Ras inhibitors: potential for cancer therapeutics. Mol Med Today. 2000;6:398–402.
  • Baines AT, Xu D, Der CJ. Inhibition of Ras for cancer treatment: the search continues. Future Med Chem. 2011;3(14):1787–1808. doi: 10.4155/fmc.11.121
  • Allinky Biopharma. Tetrahydroisoquinoline compounds. CN112262137A. January 2021.
  • Schapira M, Tyers M, Torrent M, et al. WD40 repeat domain proteins: a novel target class. Nat Rev Drug Discov. 2017;16:773–786.
  • Vanderbilt University. Wdr5 inhibitors and modulators. WO2020086857A1. April 2020. .
  • Liu L, Yan L, Liao N, et al. A review of ULK1 mediated autophagy in drug resistance of cancer. Cancers (Basel). 2020;12:352.
  • Erasca, Inc. Thiophene ULK1/2 inhibitors and their use thereof. TW202332448A. August 2023.
  • Pullamsetti SS, Banat GA, Schmall A, et al. Phosphodiesterase-4 promotes proliferation and angiogenesis of lung cancer by crosstalk with HIF. Oncogene. 2013;32(9):1121–1134. doi: 10.1038/onc.2012.136
  • Hsien Lai S, Zervoudakis G, Chou J, et al. PDE4 subtypes in cancer. Oncogene. 2020;39(19):3791–3802. doi: 10.1038/s41388-020-1258-8
  • Dong H, Claffey KP, Brocke S, et al. Inhibition of breast cancer cell migration by activation of cAMP signaling. Breast Cancer Res Treat. 2015;152(1):17–28. doi: 10.1007/s10549-015-3445-9
  • Narita M, Murata T, Shimizu K, et al. A role for cyclic nucleotide phosphodiesterase 4 in regulation of the growth of human malignant melanoma cells. Oncol Rep. 2007;17:1133–1139.10.3892/or.17.5.1133
  • Shanghai Institute of Materia Medica, Chinese Academy of Sciences Tetrahydroisoquinoline compound, preparation method therefor, pharmaceutical composition containing same, and use thereof. AU2022202463A1. May 2022.
  • Khanfar MA, Alqtaishat S Discovery of potent IRAK-4 inhibitors as potential anti-inflammatory and anticancer agents using structure-based exploration of IRAK-4 pharmacophoric space coupled with QSAR analyses. Comput Biol Chem. 2019;79:147–154. 10.1016/j.compbiolchem.2019.02.005
  • Rhyasen GW, Starczynowski DT. IRAK signalling in cancer. Br J Cancer. 2015;112(2):232–237. doi: 10.1038/bjc.2014.513
  • Kymera Therapeutics. IRAK degraders and uses thereof. AU2018396142A1. July 2020.
  • Andrew, P, Crew, YQ, Hanqing Dong, Jing Wang, Keith R. Hornberger, Craig M. Crews. Tetrahydronaphthalene and tetrahydroisoquinoline derivatives as estrogen receptor degraders. WO2018102725A1. June 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.