279
Views
8
CrossRef citations to date
0
Altmetric
Review

Investigational and experimental drugs for intraocular pressure reduction in ocular hypertension and glaucoma

&
Pages 1201-1208 | Received 28 May 2016, Accepted 08 Aug 2016, Published online: 22 Aug 2016

References

  • Weinreb RN, Friedman DS, Fechtner RD, et al. Risk assessment in the management of patients with ocular hypertension. Am J Ophthalmol. 2004;138:458–467.
  • Medeiros FA, Weinreb RN, Sample PA, et al. Validation of a predictive model to estimate the risk of conversion from ocular hypertension to glaucoma. Arch Ophthalmol. 2005;123:1351–1360.
  • Gordon MO, Kass MA. The Ocular Hypertension Treatment Study: design and baseline description of the participants. Arch Ophthalmol. 1999;117:573–583.
  • Anderson DR. Collaborative normal tension glaucoma study. Curr Opin Ophthalmol. 2003;14:86–90.
  • Leske MC, Heijl A, Hyman L, et al. Early manifest glaucoma trial: design and baseline data. Ophthalmology. 1999;106:2144–2153.
  • Ederer F, Gaasterland DE, Sullivan EK, et al. The advanced glaucoma intervention study (AGIS): 1. Study design and methods and baseline characteristics of study patients. Control Clin Trials. 1994;15:299–325.
  • Musch DC, Lichter PR, Guire KE, et al. The collaborative initial glaucoma treatment study: study design, methods, and baseline characteristics of enrolled patients. Ophthalmology. 1999;106:653–662.
  • Foster PJ, Buhrmann R, Quigley HA, et al. The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol. 2002 Feb;86(2):238–242.
  • Mantravadi AV, Vadhar N. Glaucoma. Prim Care Clin Office Pract. 2015;42:437–449.
  • Leske MC. The epidemiology of open-angle glaucoma: a review. Am J Epidemiol. 1983;118:166–191.
  • Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–267.
  • Lee BL, Bathija R, Weinreb RN. The definition of normal-tension glaucoma. J Glaucoma. 1998;7:366–371.
  • Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:714–730.
  • Winkler N, Fautsch MP. Effects of prostaglandin analogues on aqueous humor outflow pathways. J Ocul Pharmacol Ther. 2014;30(2–3):102–109.
  • Singh K, Shrivastava A. Medical management of glaucoma: principles and practice. Indian J Ophthalmol. 2011;59(suppl1):S88–S92.
  • Sambhara D, Aref AA. Glaucoma management: relative value and place in therapy of available drug treatments. Ther Adv Chronic Dis. 2014;5(1):30–43.
  • Stein JD, Ayyagari P, Sloan FA, et al. Rates of glaucoma medication utilization among persons with primary open-angle glaucoma 1992 to 2002. Ophthalmology. 2008;115:1315–1319.
  • Konstas AGP, Topouzis F, Leliopoulou O, et al. 24-hour intraocular pressure control with maximum medical therapy compared with surgery in patients with advanced open-angle glaucoma. Ophthalmology. 2006;113(5):761.e1–765.e1.
  • Alm A, Grierson I, Shields MB. Side effects associated with prostaglandin analog therapy. Surv Ophthalmol. 2008;53(supp 1):S93–S105.
  • Inoue K, Soeda S, Tomita G. Comparison of latanoprost/timolol with carbonic anhydrase inhibitor and dorzolamide/timolol with prostaglandin analog in the treatment of glaucoma. J Ophthalmol. 2014;2014:1–5.
  • Lin J-C. The use of ocular hypotensive drugs for glaucoma treatment: changing trend in Taiwan from 1997 to 2007. J Glaucoma. 2015;24(5):364–371.
  • Paletta Guedes RAP, Paletta Guedes VMP, Freitas SM, et al. Quality of life of glaucoma patients under medical therapy with different prostaglandins. Clin Ophthalmol. 2012;6:1749–1753.
  • Skalicky SE, Goldberg I, McCluskey P. Ocular surface disease and quality of life in patients with glaucoma. Am J Ophthalmol. 2012;153(1):1–9.e2.
  • Hu C-Y, Lee B-J, Cheng H-F, et al. Acetazolamide-related life-threatening hypophosphatemia in a glaucoma patient. J Glaucoma. 2015;24:e31–e33.
  • Fan N, Wang P, Tang L, et al. Ocular blood flow and normal tension glaucoma. Biomed Res Int. 2015 Epub Oct 19;2015:1–7.
  • Gramer G, Weber BHF, Gramer E. Migraine and vasospasm in glaucoma: age-related evaluation of 2027 patients with glaucoma or ocular hypertension. Invest Ophthalmol Vis Sci. 2015;56(13):7999–8007.
  • Kaiser HJ, Schoetzau A, Stümpfig D, et al. Blood flow velocities of the extraocular vessels in patients with high-tension and normal-tension primary open-angle glaucoma. Am J Ophthalmol. 1997;123(3):320–327.
  • Liu S, Lin Y, Liu X. Meta-analysis of association of obstructive sleep apnea with glaucoma. J Glaucoma. 2016;25:1–7.
  • Sena DF, Lindsley K. Neuroprotection for treatment of glaucoma in adults. Cochrane Database Syst Rev. 2013;28(2):CD006539.
  • Johnson TV, Bull ND, Hunt DP, et al. Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest Ophthalmol Vis Sci. 2010;51(4):2051–2059.
  • Johnson TV, Bull ND, Martin KR. Neurotrophic factor delivery as a protective treatment for glaucoma. Exp Eye Res. 2011;93(2):196–203.
  • Rolim De Moura CR, Paranhos A, Wormald R. Laser trabeculoplasty for open angle glaucoma. Cochrane Database Syst Rev. 2007:CD003919.
  • Nouri-Mahdavi K, Brigatti L, Weitzman M, et al. Outcomes of trabeculectomy for primary open-angle glaucoma. Ophthalmology. 1995;102:1760–1769.
  • Gedde SJ, Schiffman JC, Feuer WJ, et al. Treatment outcomes in the Tube Versus Trabeculectomy (TVT) study after five years of follow-up. Am J Ophthalmol. 2012;153(5):789–803.
  • Richter GM, Coleman AL. Minimally invasive glaucoma surgery: current status and future prospects. Clin Ophthalmol. 2016;10:189–206.
  • Knight OJ, Lawrence SD. Sustained drug delivery in glaucoma. Curr Opin Ophthalmol. 2014;25(2):112–117.
  • McVeigh KA, Vakros G. The eye drop chart: a pilot study for improving administration of and compliance with topical treatments in glaucoma patients. Clin Ophthalmol. 2015;9:813–819.
  • McKinnon SJ, Goldberg LD, Peeples P, et al. Current management of glaucoma and the need for complete therapy. Am J Manag Care. 2008;14(1 Suppl):S20–S27.
  • Aptel F, Cucherat M, Denis P. Efficacy and tolerability of prostaglandin analogs: a meta-analysis of randomized controlled clinical trials. J Glaucoma. 2008;17:667–673.
  • Zhang WY, Po AL, Dua HS, et al. Meta-analysis of randomised controlled trials comparing latanoprost with timolol in the treatment of patients with open angle glaucoma or ocular hypertension. Br J Ophthalmol. 2001;85:983–990.
  • Waterman H, Evans JR, Gray TA, et al. Interventions for improving adherence to ocular hypotensive therapy. Cochrane Database Syst Rev. 2013;4:CD006132.
  • Kosoko O, Quigley HA, Vitale S, et al. Risk factors for noncompliance with glaucoma follow-up visits in a residents’ eye clinic. Ophthalmology. 1998;105:2105–2111.
  • Katz J, Gilbert D, Quigley HA, et al. Estimating progression of visual field loss in glaucoma. Ophthalmology. 1997;104:1017–1025.
  • Pisella PA, Pouliquen P, Baudouin C. Prevalence of ocular symptoms and signs with preserved and preservative free glaucoma medication. Br J Ophthalmol. 2002;86:418–423.
  • Yamane S, Karakawa T, Nakayama S, et al. IOP-lowering effect of ONO-9054, a novel dual agonist of prostanoid EP3 and FP receptors, in monkeys. Invest Ophthalmol Vis Sci. 2015 Apr;56(4):2547–2552.
  • Lin L, Zhao YJ, Chew PT, et al. Comparative efficacy and tolerability of topical prostaglandin analogues for primary open-angle glaucoma and ocular hypertension. Ann Pharmacother. 2014;48:1585–1593.
  • Berlin MS, Rowe-Rendleman C, Ahmed I, et al. EP3/FP dual receptor agonist ONO-9054 administered morning or evening to patients with open-angle glaucoma or ocular hypertension: results of a randomized crossover study. Br J Ophthalmol. 2015;0:1–5.
  • 28-day repeated topical study to evaluate the safety and activity of 5 escalating dose levels of SAR366234 and one dose of latanoprost in patients with open angle glaucoma or ocular hypertension. ClinicalTrials.gov; [ updated 2016 Apr 26]. Available from: https://clinicaltrials.gov/ct2/show/NCT02531152
  • Riento K, Ridley AJ. ROCKs: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol. 2003;4(6):446–456.
  • Hall A. Rho GTPases and the control of cell behaviour. Biochem Soc Trans. 2005;33(5):891–895.
  • Liao JK, Seto M, Noma K. Rho kinase (ROCK) inhibitors. J Cardiovasc Pharmacol. 2007;50(1):17–24.
  • Honjo M, Tanihara H, Inatani M, et al. Effects of rho-associated protein kinase inhibitor Y-27632 on intraocular pressure and outflow facility. Invest Ophthalmol Vis Sci. 2001;42(1):137–144.
  • Rao VP, Epstein DL. Rho GTPase/Rho kinase inhibition as a novel target for the treatment of glaucoma. Bio Drugs. 2007;21(3):167–177.
  • Nakajima E, Nakajima T, Minagawa Y, et al. Contribution of ROCK in contraction of trabecular meshwork: proposed mechanism for regulating aqueous outflow in monkey and human eyes. J Pharm Sci. 2005;94(4):701–708.
  • Koga T, Koga T, Awai M, et al. Rho-associated protein kinase inhibitor, Y-27632, induces alterations in adhesion, contraction and motility in cultured human trabecular meshwork cells. Exp Eye Res. 2006;82(3):362–370.
  • Wang S, Chang R. An emerging treatment option for glaucoma: Rho kinase inhibitors. Clin Ophthalmol. 2014;8:883–890.
  • Chen J, Runyan SA, Robinson MR. Novel ocular antihypertensive compounds in clinical trials. Clin Ophthalmol. 2011;5:667–677.
  • Kopczynski CC, Epstein DL. Emerging trabecular outflow drugs. J Ocul Pharmacol Ther. 2014;30:85–87.
  • Tanihara H, Inoue T, Yamamoto T, et al. Phase 2 randomized clinical study of a rho kinase inhibitor, K-115, in primary open-angle glaucoma and ocular hypertension. Am J Ophthalmol. 2013;156:731–736.
  • Van De Velde S, Van Bergen T, Sijnave D, et al. AMA0076, a novel, locally acting Rho kinase inhibitor, potently lowers intraocular pressure in New Zealand white rabbits with minimal hyperemia. Invest Ophthalmol Vis Sci. 2014;55:1006–1016.
  • Mandell KJ, Kudelka MR, Wirostko B. Rho kinase inhibitors for treatment of glaucoma. Exp Rev Ophthalmol. 2011;6:611–622.
  • Amakem presents positive top-line clinical results for AMA0076 for glaucoma at ophthalmology innovation summit. PRNewswire.com; 2013 Nov 14. Available from: http://www.prnewswire.com/news-releases/amakem-presents-positive-top-line-clinical-results-for-ama0076-for-glaucoma-at-ophthalmology-innovation-summit-231913301.html
  • Tanihara H, Inatani M, Honjo M, et al. Intraocular pressure-lowering effects and safety of topical administration of a selective ROCK inhibitor, SNJ-1656, in healthy volunteers. Arch Ophthalmol. 2008;126(3):309–315.
  • Inoue T, Tanihara H, Tokushige H, et al. Efficacy and safety of SNJ-1656 in primary open-angle glaucoma or ocular hypertension. Acta Ophthalmol. 2015;93(5):e393–e395.
  • Fredholm BB. Adenosine receptors as drug targets. Exp Cell Res. 2010;316(8):1284–1288.
  • Karl MO, Peterson-Yantorno K, Civan MM. Cell-specific differential modulation of human trabecular meshwork cells by selective adenosine receptor agonists. Exp Eye Res. 2007;84(1):126–134.
  • Webb RL, Sills MA, Chovan JP, et al. Development of tolerance to the antihypertensive effects of highly selective adenosine A2a agonists upon chronic administration. J Pharmacol Exp Ther. 1993;267(1):287–295.
  • Zhang K, Zhang L, Weinreb RN. Ophthalmic drug discovery: novel targets and mechanisms for retinal diseases and glaucoma. Nat Rev Drug Discov. 2012;11:541–559.
  • Lu PY, Xie F, Woodle MC. In vivo application of RNA interference: from functional genomics to therapeutics. Adv Genet. 2005;54:117–142.
  • López-Fraga M, Martínez T, Jiménez A. RNA interference technologies and therapeutics: from basic research to products. BioDrugs. 2009;23:305–332.
  • Campochiaro PA. Potential applications for RNAi to probe pathogenesis and develop new treatments for ocular disorders. Gene Ther. 2006;13:559–562.
  • Martínez T, González MV, Roehl I, et al. In vitro and in vivo efficacy of SYL040012, a novel siRNA compound for treatment of glaucoma. Mol Ther. 2014;22(1):81–91.
  • Gupta SK, Agarwal R, Galpalli ND, et al. Comparative efficacy of pilocarpine, timolol and latanoprost in experimental models of glaucoma. Methods Find Exp Clin Pharmacol. 2007;29:665–671.
  • Moreno-Montañés J, Sádaba B, Ruz V, et al. Phase I clinical trial of SYL040012, a small interfering RNA targeting β-adrenergic receptor 2, for lowering intraocular pressure. Mol Ther. 2014;22(1):226–232.
  • Spector I, Shochet NR, Blasberger D, et al. Latrunculins–novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison with cytochalasin D. Cell Motil Cytoskeleton. 1989;13:127–144.
  • Spector I, Shochet NR, Kashman Y, et al. Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science. 1983;219:493–495.
  • Peterson JA, Tian B, Geiger B, et al. Effect of latrunculin-B on outflow facility in monkeys. Exp Eye Res. 2000;70:307–313.
  • Tian B, Gabelt BT, Geiger B, et al. The role of the actomyosin system in regulating trabecular fluid outflow. Exp Eye Res. 2009;88:713–717.
  • Okka M, Tian B, Kaufman PL. Effects of latrunculin B on outflow facility, intraocular pressure, corneal thickness, and miotic and accommodative responses to pilocarpine in monkeys. Trans Am Ophthalmol Soc. 2004;102:251–257.
  • Rasmussen CA, Kaufman PL, Ritch R, et al. Latrunculin B reduces intraocular pressure in human ocular hypertension and primary open-angle glaucoma. Tran Vis Sci Tech. 2014;3(5):1.
  • Bernard O. Lim kinases, regulators of actin dynamics. Int J Biochem Cell Biol. 2007;39:1071−1076.
  • Harrison BA, Almstead ZY, Burgoon H, et al. Discovery and development of LX7101, a dual LIM-kinase and ROCK inhibitor for the treatment of glaucoma. ACS Med Chem Lett. 2015;6(1):84–88.
  • Harrison BA, Whitlock NA, Voronkov MV, et al. Novel class of LIM-kinase 2 inhibitors for the treatment of ocular hypertension and associated glaucoma. J Med Chem. 2009;52(21):6515–6518.
  • Fishman P, Cohen S, Bar-Yehuda S. Targeting the A3 adenosine receptor for glaucoma treatment (review). Mol Med Rep. 2013;7:1723–1725.
  • Avni I, Garzozi HJ, Barequet IS, et al. Treatment of dry eye syndrome with orally administered CF101: data from a phase 2 clinical trial. Ophthalmology. 2010;117:1287–1293.
  • Fechtner R Prevalence of ocular surface disease symptoms in glaucoma patients on IOP-lowering medications. Presented at: American Glaucoma Society 2008 annual meeting; 2008 March 6–9; Washington, DC, 3-6-0008.
  • Leung EW, Medeiros FA, Weinreb RN. Prevalence of ocular surface disease in glaucoma patients. J Glaucoma. 2008;17:350–355.
  • Bar-Yehuda S, Luger D, Ochaion A, et al. Inhibition of experimental autoimmune uveitis by the A3 adenosine receptor agonist CF101. Int J Mol Med. 2011;28:727–731.
  • Kersey JP, Broadway DC. Corticosteroid-induced glaucoma: a review of the literature. Eye. 2006;20:407–416.
  • Rauz S, Cheung CM, Wood PJ, et al. Inhibition of 11beta-hydroxysteroid dehydrogenase type 1 lowers intraocular pressure in patients with ocular hypertension. QJM. 2003;96:481–490.
  • Scott JS, Goldberg FW, Turnbull AV. Medical chemistry of inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). J Med Chem. 2014;57:4466–4486.
  • Rauz S, Walker EA, Shackleton CH, et al. Expression and putative role of 11 beta-hydroxysteroid dehydrogenase isozymes within the human eye. Invest Ophthalmol Vis Sci. 2001;42:2037–2042.
  • Anderson S, Carreiro S, Quenzer T, et al. In vivo evaluation of 11beta-hydroxysteroid dehydrogenase activity in the rabbit eye. J Ocul Pharmacol Ther. 2009;25(3):215–222.
  • Wordinger RJ, Clark AF. Effects of glucocorticoids on the trabecular meshwork: towards a better understanding of glaucoma. Prog Retin Eye Res. 1999;18:629–667.
  • A study of RO5093151 in patients with ocular hypertension or open angle glaucoma. ClinicalTrials.gov; [ updated 2016 Aug 1]. Available from: https://clinicaltrials.gov/ct2/show/NCT01493271
  • A study to investigate the safety, tolerability, pharmacokinetics, and pharmacodynamics of RO5093151 in patients with primary open angle glaucoma (POAG) or ocular hypertension (OHT). ClinicalTrials.gov; [ updated 2016 Feb 29]. Available from: https://clinicaltrials.gov/ct2/show/NCT02622334
  • Kingman S. Glaucoma is second leading cause of blindness globally. Bull World Health Organ. 2004;82(11):887–888.
  • Bean GW, Camras CB. Commercially available prostaglandin analogs for the reduction of intraocular pressure: similarities and differences. Surv Ophthalmol. 2008;53(suppl 1):S69–S84.
  • Goldberg I, Clement CI, Chiang TH, et al. Assessing quality of life in patients with glaucoma using the Glaucoma Quality of Life-15 (GQL-15) questionnaire. J Glaucoma. 2009;18:6–12.
  • Reardon G, Kotak S, Schwartz GF. Objective assessment of compliance and persistence among patients treated for glaucoma and ocular hypertension: a systematic review. Patient Prefer Adherence. 2011;5:441–463.
  • DiMatteo MR, Giordani PJ, Lepper HS, et al. Patient adherence and medical treatment outcomes: a meta-analysis. Med Care. 2002;40(9):794–811.
  • Chan HH, Wong TT, Lamoureux E, et al. A survey on the preference of sustained glaucoma drug delivery systems by Singaporean Chinese patients: a comparison between subconjunctival, intracameral, and punctal plug routes. J Glaucoma. 2015;24(7):485–492.
  • Jones R 3rd, Rhee DJ. Corticosteroid-induced ocular hypertension and glaucoma: a brief review and update of the literature. Curr Opin Ophthalmol. 2006;17(2):163–167.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.