295
Views
10
CrossRef citations to date
0
Altmetric
Review

TP53 dysfunction in chronic lymphocytic leukemia: clinical relevance in the era of B-cell receptors and BCL-2 inhibitors

, , ORCID Icon, , , , , , , , , , , , , , , , , , & show all
Pages 869-880 | Received 31 Mar 2020, Accepted 12 Jun 2020, Published online: 27 Jun 2020

References

  • Khan Y , Lyou Y , El-Masry M , et al. Reassessing the role of chemoimmunotherapy in chronic lymphocytic leukemia. Expert Rev Hematol. 2020;13(1):31–38.
  • Fürstenau M , Hallek M , Eichhorst B. Sequential and combination treatments with novel agents in chronic lymphocytic leukemia. Haematologica. 2019;104(11):2144–2154.
  • Döhner H , Stilgenbauer S , Benner A , et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910–1916.
  • Stilgenbauer S , Schnaiter A , Paschka P , et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood. 2014;123(21):3247–3254.
  • Zaja F , Mian M , Volpetti S , et al. Bendamustine in chronic lymphocytic leukemia: outcome according to different clinical and biological prognostic factors in the everyday clinical practice. Am J Hematol. 2013;88(11):955–960.
  • Gaidano G , Rossi D. The mutational landscape of chronic lymphocytic leukemia and its impact on prognosis and treatment. Hematology Am Soc Hematol Educ Program. 2017;2017(1):329–337.
  • Rossi D , Terzi-di-Bergamo L , De Paoli L , et al. Molecular prediction of durable remission after first-line fludarabine-cyclophosphamide-rituximab in chronic lymphocytic leukemia. Blood. 2015;126(16):1921–1924.
  • Thompson PA , Tam CS , O’Brien SM , et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood. 2016;127(3):303–309.
  • Fischer K , Bahlo J , Fink AM , et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood. 2016;127(2):208–215.
  • Chai-Adisaksopha C , Brown JR . FCR achieves long-term durable remissions in patients with IGHV-mutated CLL. Blood. 2017;130(21):2278–2282.
  • Gentile M , Shanafelt TD , Reda G , et al. Validation of a biological score to predict response in chronic lymphocytic leukemia patients treated front-line with bendamustine and rituximab. Leukemia. 2018;32(8):1869–1873.
  • Herling CD , Coombes KR , Benner A , et al. Time-to-progression after front-line fludarabine, cyclophosphamide, and rituximab chemoimmunotherapy for chronic lymphocytic leukaemia: a retrospective, multicohort study. Lancet Oncol. 2019;20(11):1576–1586.
  • Molica S , Giannarelli D , Montserrat E . Minimal residual disease and survival outcomes in patients with chronic lymphocytic leukemia: a systematic review and meta-analysis. Clin Lymphoma Myeloma Leuk. 2019;19(7):423–430.
  • Thompson PA , Srivastava J , Peterson C , et al. Minimal residual disease undetectable by next-generation sequencing predicts improved outcome in CLL after chemoimmunotherapy. Blood. 2019;134(22):1951–1959.
  • International CLL-IPI working group . An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol. 2016;17(6):779–790.
  • Gentile M , Shanafelt TD , Mauro FR , et al. Predictive value of the CLL-IPI in CLL patients receiving chemo-immunotherapy as first-line treatment. Eur J Haematol. 2018;101(5):703–706.
  • Muñoz-Novas C , Poza-Santaella M , González-Gascón Y Marín I , et al. The international prognostic index for patients with chronic lymphocytic leukemia has the higher value in predicting overall outcome compared with the barcelona-brno biomarkers only prognostic model and the MD anderson cancer center prognostic index. Biomed Res Int. 2018;2018:9506979.
  • Gentile M , Shanafelt TD , Mauro FR , et al. Comparison between the CLL-IPI and the barcelona-brno prognostic model: analysis of 1299 newly diagnosed cases. Am J Hematol. 2018;93(2):E35–E37.
  • Molica S , Giannarelli D , Mirabelli R , et al. Chronic lymphocytic leukemia international prognostic index (CLL-IPI) in patients receiving chemoimmuno or targeted therapy: a systematic review and meta-analysis. Ann Hematol. 2018;97(10):2005–2008.
  • Burger JA , Tedeschi A , Barr PM , et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med. 2015;373(25):2425–2437.
  • Barr PM , Robak T , Owen C , et al. Sustained efficacy and detailed clinical follow-up of first-line ibrutinib treatment in older patients with chronic lymphocytic leukemia: extended phase 3 results from RESONATE-2. Haematologica. 2018;103(9):1502–1510.
  • Burger JA , Barr PM , Robak T , et al. Long-term efficacy and safety of first-line ibrutinib treatment for patients with CLL/SLL: 5 years of follow-up from the phase 3 RESONATE-2 study. Leukemia. 2020;34(3):787–798.
  • Shanafelt TD , Wang XV , Kay NE , et al. Ibrutinib-rituximab or chemoimmunotherapy for chronic lymphocytic leukemia. N Engl J Med. 2019;381(5):432–443.
  • Woyach JA , Ruppert AS , Heerema NA , et al. Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL. N Engl J Med. 2018;379(26):2517–2528.
  • Moreno C , Greil R , Demirkan F , et al. Ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab in first-line treatment of chronic lymphocytic leukaemia (iLLUMINATE): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20(1):43–56. .
  • Byrd JC , Brown JR , O’Brien S , et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213–223.
  • Furman RR , Sharman JP , Coutre SE , et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370(11):997–1007.
  • Chanan-Khan A , Cramer P , Demirkan F , et al. Ibrutinib combined with bendamustine and rituximab compared with placebo, bendamustine, and rituximab for previously treated chronic lymphocytic leukaemia or small lymphocytic lymphoma (HELIOS): a randomised, double-blind, phase 3 study. Lancet Oncol. 2016;17(2):200–211.
  • Zelenetz AD , Barrientos JC , Brown JR , et al. Idelalisib or placebo in combination with bendamustine and rituximab in patients with relapsed or refractory chronic lymphocytic leukaemia: interim results from a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2017;18(3):297–311.
  • Fornecker L-M , Aurran-Schleinitz T , Michallet A-S , et al. Salvage outcomes in patients with first relapse after fludarabine, cyclophosphamide, and rituximab for chronic lymphocytic leukemia: the French intergroup experience. Am J Hematol. 2015;90(6):511–514.
  • Cuneo A , Follows G , Rigolin GM , et al. Efficacy of bendamustine and rituximab as first salvage treatment in chronic lymphocytic leukemia and indirect comparison with ibrutinib: a GIMEMA, ERIC and UK CLL FORUM study. Haematologica. 2018;103(7):1209–1217.
  • Munir T , Brown JR , O’Brien S , et al. Final analysis from RESONATE: up to six years of follow-up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma. Am J Hematol. 2019;94(12):1353–1363.
  • Brown JR , Hillmen P , O’Brien S , et al. Extended follow-up and impact of high-risk prognostic factors from the phase 3 RESONATE study in patients with previously treated CLL/SLL. Leukemia. 2018;32(1):83–91.
  • Jones J , Mato A , Coutre S , et al. Evaluation of 230 patients with relapsed/refractory deletion 17p chronic lymphocytic leukaemia treated with ibrutinib from 3 clinical trials. Br J Haematol. 2018;182(4):504–512.
  • Robertson LE , Plunkett W , McConnell K , et al. Bcl-2 expression in chronic lymphocytic leukemia and its correlation with the induction of apoptosis and clinical outcome. Leukemia. 1996;10(3):456–459.
  • Cimmino A , Calin GA , Fabbri M , et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005;102(39):13944–13949.
  • Perini GF , Ribeiro GN , Pinto Neto JV , et al. BCL-2 as therapeutic target for hematological malignancies. J Hematol Oncol. 2018;11(1):65.
  • Anderson MA , Deng J , Seymour JF , et al. The BCL2 selective inhibitor venetoclax induces rapid onset apoptosis of CLL cells in patients via a TP53-independent mechanism. Blood. 2016;127(25):3215–3224.
  • Roberts AW , Davids MS , Pagel JM , et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):311–322.
  • Stilgenbauer S , Eichhorst B , Schetelig J , et al. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study. Lancet Oncol. 2016;17(6):768–778.
  • Stilgenbauer S , Eichhorst B , Schetelig J , et al. Venetoclax for patients with chronic lymphocytic leukemia with 17p deletion: results from the full population of a phase II pivotal trial. J Clin Oncol. 2018;36(19):1973–1980. .
  • Souers AJ , Leverson JD , Boghaert ER , et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19(2):202–208.
  • Seymour JF , Kipps TJ , Eichhorst B , et al. Venetoclax-rituximab in relapsed or refractory chronic lymphocytic leukemia. N Engl J Med. 2018;378(12):1107–1120.
  • Fischer K , Al-Sawaf O , Bahlo J , et al. Venetoclax and obinutuzumab in patients with CLL and coexisting conditions. N Engl J Med. 2019;380(23):2225–2236.
  • Sherman RE , Anderson SA , Dal Pan GJ , et al. Real-world evidence - what is it and what can it tell us? N Engl J Med. 2016;375(23):2293–2297.
  • Salles G , Bachy E , Smolej L , et al. Single-agent ibrutinib in RESONATE-2TM and RESONATETM versus treatments in the real-world PHEDRA databases for patients with chronic lymphocytic leukemia. Ann Hematol. 2019;98(12):2749–2760.
  • Ysebaert L , Aurran-Schleinitz T , Dartigeas C , et al. Real-world results of ibrutinib in relapsed/refractory CLL in France: early results on a large series of 428 patients. Am J Hematol. 2017;92(8):E166–E168.
  • Dimou M , Iliakis T , Pardalis V , et al. Safety and efficacy analysis of long-term follow up real-world data with ibrutinib monotherapy in 58 patients with CLL treated in a single-center in Greece. Leuk Lymphoma. 2019;60(12):2939–2945.
  • Winqvist M , Andersson P-O , Asklid A , et al. Long-term real-world results of ibrutinib therapy in patients with relapsed or refractory chronic lymphocytic leukemia: 30-month follow up of the Swedish compassionate use cohort. Haematologica. 2019;104(5):e208–e210.
  • Winqvist M , Asklid A , Andersson PO , et al. Real-world results of ibrutinib in patients with relapsed or refractory chronic lymphocytic leukemia: data from 95 consecutive patients treated in a compassionate use program. A study from the swedish chronic lymphocytic leukemia group. Haematologica. 2016;101(12):1573–1580.
  • Gentile M , Morabito F , Del Poeta G , et al. Survival risk score for real-life relapsed/refractory chronic lymphocytic leukemia patients receiving ibrutinib. A campus CLL study. Leukemia. 2020; DOI:10.1038/s41375-020-0833-x.
  • Soumerai JD , Ni A , Darif M , et al. Prognostic risk score for patients with relapsed or refractory chronic lymphocytic leukaemia treated with targeted therapies or chemoimmunotherapy: a retrospective, pooled cohort study with external validations. Lancet Haematol. 2019;6(7):e366–e374.
  • Mato AR , Thompson M , Allan JN , et al. Real-world outcomes and management strategies for venetoclax-treated chronic lymphocytic leukemia patients in the United States. Haematologica. 2018;103(9):1511–1517.
  • Byrd JC , Harrington B , O’Brien S , et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):323–332.
  • Ghia P , Pluta A , Wach M , et al. ASCEND: phase III, randomized trial of acalabrutinib versus idelalisib plus rituximab or bendamustine plus rituximab in relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol. 2020; JCO1903355.
  • Sharman JP , Egyed M , Jurczak W , et al. Acalabrutinib with or without obinutuzumab versus chlorambucil and obinutuzmab for treatment-naive chronic lymphocytic leukaemia (ELEVATE TN): a randomised, controlled, phase 3 trial. Lancet. 2020;395(10232):1278–1291.
  • Soussi T . Caron de Fromentel C, May P. Oncogene. 1990;5:945–952.
  • Malkin D , Li FP , Strong LC , et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250(4985):1233–1238.
  • Kastenhuber ER , Lowe SW . Putting p53 in Context. Cell. 2017;170(6):1062–1078.
  • Vousden KH , Lane DP . p53 in health and disease. Nat Rev Mol Cell Biol. 2007;8(4):275–283.
  • Menendez D , Inga A , Resnick MA . The expanding universe of p53 targets. Nat Rev Cancer. 2009;9(10):724–737.
  • Leroy B , Fournier JL , Ishioka C , et al. The TP53 website: an integrative resource centre for the TP53 mutation database and TP53 mutant analysis. Nucleic Acids Res. 2013;41(D1):D962–969.
  • Cerami E , Gao J , Dogrusoz U , et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–404.
  • Gao J , Aksoy BA , Dogrusoz U , et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1.
  • Zenz T for the European Research Initiative on CLL (ERIC) , Vollmer D , Trbusek M , et al. TP53 mutation profile in chronic lymphocytic leukemia: evidence for a disease specific profile from a comprehensive analysis of 268 mutations. Leukemia. 2010;24(12):2072–2079.
  • Cho Y , Gorina S , Jeffrey PD , et al. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 1994;265(5170):346–355.
  • Oren M , Rotter V . Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol. 2010;2(2):a001107.
  • Kato S , Han S-Y , Liu W , et al. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA. 2003;100(14):8424–8429.
  • Bisio A , Ciribilli Y , Fronza G , et al. TP53 mutants in the tower of babel of cancer progression. Hum Mutat. 2014;35(6):689–701.
  • Sabapathy K , Lane DP . Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat Rev Clin Oncol. 2018;15(1):13–30.
  • Monti P , Ciribilli Y , Jordan J , et al. Transcriptional functionality of germ line p53 mutants influences cancer phenotype. Clin Cancer Res. 2007;13(13):3789–3795.
  • Trbusek M , Smardova J , Malcikova J , et al. Missense mutations located in structural p53 DNA-binding motifs are associated with extremely poor survival in chronic lymphocytic leukemia. JCO. 2011;29(19):2703–2708. .
  • Gurtner A , Starace G , Norelli G , et al. Mutant p53-induced up-regulation of mitogen-activated protein kinase kinase 3 contributes to gain of function. J Biol Chem. 2010;285(19):14160–14169.
  • Mraz M , Pospisilova S , Malinova K , et al. MicroRNAs in chronic lymphocytic leukemia pathogenesis and disease subtypes. Leuk Lymphoma. 2009;50(3):506–509. .
  • Te Raa GD , Malčiková J , Mraz M , et al. Assessment of TP53 functionality in chronic lymphocytic leukaemia by different assays; an ERIC-wide approach. Br J Haematol. 2014;167(4):565–569.
  • Navrkalova V , Sebejova L , Zemanova J , et al. ATM mutations uniformly lead to ATM dysfunction in chronic lymphocytic leukemia: application of functional test using doxorubicin. Haematologica. 2013;98(7):1124–1131.
  • Cerna K , Oppelt J , Chochola V , et al. MicroRNA miR-34a downregulates FOXP1 during DNA damage response to limit BCR signalling in chronic lymphocytic leukaemia B cells. Leukemia. 2019;33(2):403–414.
  • Best OG , Gardiner AC , Majid A , et al. A novel functional assay using etoposide plus nutlin-3a detects and distinguishes between ATM and TP53 mutations in CLL. Leukemia. 2008;22(7):1456–1459.
  • Malcikova J on behalf of the European Research Initiative on Chronic Lymphocytic Leukemia (ERIC) — TP53 network , Tausch E , Rossi D , et al. ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia—update on methodological approaches and results interpretation. Leukemia. 2018;32(5):1070–1080.
  • Campo E , Cymbalista F , Ghia P , et al. TP53 aberrations in chronic lymphocytic leukemia: an overview of the clinical implications of improved diagnostics. Haematologica. 2018;103(12):1956–1968.
  • Pavlova S , Smardova J , Tom N , et al. Detection and Functional Analysis of TP53 Mutations in CLL. Methods Mol Biol. 2019;1881:63–81.
  • Zenz T , Krober A , Scherer K , et al. Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood. 2008;112(8):3322–3329.
  • Rossi D , Khiabanian H , Spina V , et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood. 2014;123(14):2139–2147.
  • Rossi D , Cerri M , Deambrogi C , et al. The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independent of del17p13: implications for overall survival and chemorefractoriness. Clin Cancer Res. 2009;15(3):995–1004.
  • Malcikova J , Stano-Kozubik K , Tichy B , et al. Detailed analysis of therapy-driven clonal evolution of TP53 mutations in chronic lymphocytic leukemia. Leukemia. 2015;29(4):877–885.
  • Cutrona G , Tripodo C , Matis S , et al. Microenvironmental regulation of the IL-23R/IL-23 axis overrides chronic lymphocytic leukemia indolence. Sci Transl Med. 2018;10:428.
  • Dicker F , Schnittger S , Haferlach T , et al. Immunostimulatory oligonucleotide-induced metaphase cytogenetics detect chromosomal aberrations in 80% of CLL patients: A study of 132 CLL cases with correlation to FISH, IgVH status, and CD38 expression. Blood. 2006;108(9):3152–3160.
  • Rigolin GM , Cavallari M , Quaglia FM , et al. In CLL, comorbidities and the complex karyotype are associated with an inferior outcome independently of CLL-IPI. Blood. 2017;129(26):3495–3498.
  • Baliakas P , Jeromin S , Iskas M , et al. Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact. Blood. 2019;133(11):1205–1216.
  • Rossi D , Spina V , Gaidano G . Biology and treatment of Richter syndrome. Blood. 2018;131(25):2761–2772.
  • Anderson MA , Tam C , Lew TE , et al. Clinicopathological features and outcomes of progression of CLL on the BCL2 inhibitor venetoclax. Blood. 2017;129(25):3362–3370.
  • Filip D , Mraz M . The role of MYC in the transformation and aggressiveness of “indolent” B-cell malignancies. Leuk Lymphoma. 2020;61(3):510–524.
  • Zenz T , Eichhorst B , Busch R , et al. TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol. 2010;28(29):4473–4479.
  • Condoluci A , Terzi Di Bergamo L , Langerbeins P , et al. International prognostic score for asymptomatic early-stage chronic lymphocytic leukemia. Blood. 2020;135(21):1859–1869. .
  • Best OG , Gardiner AC , Davis ZA , et al. A subset of Binet stage A CLL patients with TP53 abnormalities and mutated IGHV genes have stable disease. Leukemia. 2009;23(1):212–214.
  • Tam CS , Seymour JF . A predictive tool for early-stage CLL. Blood. 2020;135(21):1820–1821.
  • Mato AR , Barrientos JC , Ghosh N , et al. Prognostic testing and treatment patterns in chronic lymphocytic leukemia in the era of novel targeted therapies: results from the informCLL registry. Clin Lymphoma Myeloma Leuk. 2020;20(3):174–183.e3.
  • Ravandi F , O’brien S . Alemtuzumab in CLL and other lymphoid neoplasms. Cancer Invest. 2006;24(7):718–725.
  • Gauthier J , Hirayama AV , Purushe J , et al. Feasibility and efficacy of CD19-targeted CAR T cells with concurrent ibrutinib for CLL after ibrutinib failure. Blood. 2020;135(19):1650–1660.
  • Kharfan-Dabaja MA , Kumar A , Hamadani M , et al. Clinical practice recommendations for use of allogeneic hematopoietic cell transplantation in chronic lymphocytic leukemia on behalf of the guidelines committee of the american society for blood and marrow transplantation. Biol Blood Marrow Transplant. 2016;22(12):2117–2125.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.