427
Views
4
CrossRef citations to date
0
Altmetric
Review

Innovative therapies for invasive fungal infections in preclinical and clinical development

, , & ORCID Icon
Pages 961-971 | Received 31 Jan 2020, Accepted 01 Jul 2020, Published online: 06 Aug 2020

References

  • Mellinghoff S , Panse J , Alakel N , et al. Primary prophylaxis of invasive fungal infections in patients with haematological malignancies: 2017 update of the recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society for Haematology and Medical Oncology (DGHO). Ann Hematol. 2018;97(2):197–207.
  • Armstrong-James D , Meintjes G , Brown G. A neglected epidemic: fungal infections in HIV/AIDS. Trends Microbiol. 2014;22(3):120–127.
  • Bongomin F , Gago S , Oladele R , et al. Global and multi-national prevalence of fungal diseases-estimate precision. J Fungi (Basel). 2017;3(4):57.
  • Brown G , Denning D , Gow N , et al. Hidden killers: human fungal infections. Sci Transl Med. 2012;4:165rv13.
  • Skiada A , Pavleas I , Drogari-Apiranthitou M. Rare fungal infectious agents: a lurking enemy. F1000Res. 2017;6:1917.
  • Seyedmousavi S , Rafati H , Ilkit M , et al. Systemic antifungal agents: current status and projected future developments. Methods Mol Biol. 2017;1508:107–139.
  • Laniado-Laborin R , Cabrales-Vargas M. Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 2009;26(4):223–227.
  • Nivoix Y , Ubeaud-Sequier G , Engel P , et al. Drug-drug interactions of triazole antifungal agents in multimorbid patients and implications for patient care. Curr Drug Metab. 2009;10(4):395–409.
  • Chowdhary A , Kathuria S , Xu J , et al. Emergence of azole-resistant Aspergillus fumigatus strains due to agricultural azole use creates an increasing threat to human health. PLoS Pathog. 2013;9(10):e1003633.
  • Whaley S , Berkow E , Rybak J , et al. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front Microbiol. 2017;7:2173.
  • Wiederhold N . Echinocandin resistance in Candida species: a review of recent developments. Curr Infect Dis Rep. 2016;18(12):42.
  • Pristov K , Ghannoum M . Resistance of Candida to azoles and echinocandins worldwide. Clin Microbiol Infect. 2019;25(7):792–798.
  • Denning D , Hope W . Therapy for fungal diseases: opportunities and priorities. Trends Microbiol. 2010;18(5):195–204.
  • Perfect J . Is there an emerging need for new antifungals? Expert Opin Emerg Dr. 2016;21(2):129–131.
  • Denning DW , Bromley MJ . Infectious disease. How to bolster the antifungal pipeline. Science. 2015;347(6229):1414–1416.
  • Stop neglecting fungi. Nat Microbiol. 2017;2:17120.
  • von Lilienfeld-toal M , Wagener J , Einsele H , et al. Invasive fungal infection: new treatments to meet new challenges. Dtsch Arztebl Int. 2019;116(16):271–278.
  • Osherov N , Kontoyiannis D . The anti-Aspergillus drug pipeline: is the glass half full or empty? Med Mycol. 2017;55(1):118–124.
  • Roemer T , Krysan D . Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med. 2014;4(5):a019703.
  • Paiva J , Pereira J . Biomarkers of fungal lung infection. Curr Opin Infect Dis. 2019;32(2):136–142.
  • Pianalto K , Alspaugh J . New horizons in antifungal therapy. J Fungi (Basel). 2016;2:26.
  • Warrilow A , Hull C , Parker J , et al. The clinical candidate VT-1161 is a highly potent inhibitor of Candida albicans CYP51 but fails to bind the human enzyme. Antimicrob Agents Chemother. 2014;58(12):7121–7127.
  • Rivero-Menendez O , Alastruey-Izquierdo A , Mellado E , et al. Triazole resistance in Aspergillus spp.: a worldwide problem? J Fungi (Basel). 2016;2(3):21.
  • Verweij P , Chowdhary A , Melchers W , et al. Azole resistance in Aspergillus fumigatus: can we retain the clinical use of mold-active antifungal azoles? Clin Infect Dis. 2016;62(3):362–368.
  • Berger S , El Chazli Y , Babu A , et al. Azole resistance in Aspergillus fumigatus: a consequence of antifungal use in agriculture? Front Microbiol. 2017;8:1024.
  • Chen P , Liu J , Zeng M , et al. Exploring the molecular mechanism of azole resistance in Aspergillus fumigatus . J Mycol Med. 2020;30(1):100915.
  • Perea S , Patterson T . Antifungal resistance in pathogenic fungi. Clin Infect Dis. 2002;35(9):1073–1080.
  • Perlin D . Mechanisms of echinocandin antifungal drug resistance. Ann N Y Acad Sci. 2015;1354(1):1–11.
  • Lockhart S , Etienne K , Vallabhaneni S , et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 2017;64(2):134–140.
  • Hoekstra W , Garvey E , Moore W , et al. Design and optimization of highly-selective fungal CYP51 inhibitors. Bioorg Med Chem Lett. 2014;24(15):3455–3458.
  • Wiederhold N , Najvar L , Garvey E , et al. The fungal Cyp51 inhibitor VT-1129 is efficacious in an experimental model of cryptococcal meningitis. Antimicrob Agents Chemother. 2018;62(9):e01071–18.
  • Sandherr M , Maschmeyer G . Pharmacology and metabolism of voriconazole and posaconazole in the treatment of invasive aspergillosis: review of the literature. Eur J Med Res. 2011;16(4):139–144.
  • Wiederhold N , Patterson H , Tran B , et al. Fungal-specific Cyp51 inhibitor VT-1598 demonstrates in vitro activity against Candida and Cryptococcus species, endemic fungi, including Coccidioides species, Aspergillus species and Rhizopus arrhizus . J Antimicrob Chemother. 2018;73(2):404–408.
  • Wiederhold N , Lockhart S , Najvar L , et al. The fungal Cyp51-specific inhibitor VT-1598 demonstrates in vitro and in vivo activity against Candida auris . Antimicrob Agents Chemother. 2019;63(3). DOI:10.1128/AAC.00779-19.
  • Wiederhold N , Shubitz L , Najvar L , et al. The novel fungal Cyp51 inhibitor VT-1598 is efficacious in experimental models of central nervous system coccidioidomycosis caused by Coccidioides posadasii and Coccidioides immitis . Antimicrob Agents Chemother. 2018;62(4):e02258–17.
  • Garvey E , Sharp A , Warn P , et al. The novel fungal CYP51 inhibitor VT-1598 is efficacious alone and in combination with liposomal amphotericin B in a murine model of cryptococcal meningitis. J Antimicrob Chemother. 2018;73(10):2815–2822.
  • Sofjan A , Mitchell A , Shah D , et al. Rezafungin (CD101), a next-generation echinocandin: a systematic literature review and assessment of possible place in therapy. J Glob Antimicrob Resist. 2018;14:58–64.
  • Sandison T , Ong V , Lee J , et al. Safety and pharmacokinetics of CD101 IV, a novel echinocandin, in healthy adults. Antimicrob Agents Chemother. 2017;61(2):e01627–16.
  • Krishnan B , James K , Polowy K , et al. CD101, a novel echinocandin with exceptional stability properties and enhanced aqueous solubility. J Antibiot (Tokyo). 2017;70(2):130–135.
  • Pfaller M , Messer S , Motyl M , et al. Activity of MK-3118, a new oral glucan synthase inhibitor, tested against Candida spp. by two international methods (CLSI and EUCAST). J Antimicrob Chemother. 2013;68(4):858–863.
  • Jimenez-Ortigosa C , Perez WB , Angulo D , et al. De novo acquisition of resistance to SCY-078 in Candida glabrata involves FKS mutations that both overlap and are distinct from those conferring echinocandin resistance. Antimicrob Agents Chemother. 2017;61(9):e00833–17.
  • Shaw K , Schell W , Covel J , et al., In vitro and in vivo evaluation of APX001A/APX001 and other Gwt1 inhibitors against Cryptococcus . Antimicrob Agents Chemother. 2018;62(8): e00523–18.
  • Miyazaki M , Horii T , Hata K , et al. In vitro activity of E1210, a novel antifungal, against clinically important yeasts and molds. Antimicrob Agents Chemother. 2011;55(10):4652–4658.
  • Oliver J , Sibley G , Beckmann N , et al., F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc Natl Acad Sci U S A. 2016;113(45): 12809–12814.
  • Nishikawa H , Sakagami T , Yamada E , et al. T-2307, a novel arylamidine, is transported into Candida albicans by a high-affinity spermine and spermidine carrier regulated by Agp2. J Antimicrob Chemother. 2016;71(7):1845–1855.
  • Yamashita K , Miyazaki T , Fukuda Y , et al., The novel arylamidine T-2307 selectively disrupts yeast mitochondrial function by inhibiting respiratory chain complexes. Antimicrob Agents Chemother. 2019;63(8): e00374–19.
  • Shibata T , Takahashi T , Yamada E , et al. T-2307 causes collapse of mitochondrial membrane potential in yeast. Antimicrob Agents Chemother. 2012;56(11):5892–5897.
  • Mitsuyama J , Nomura N , Hashimoto K , et al. In vitro and in vivo antifungal activities of T-2307, a novel arylamidine. Antimicrob Agents Chemother. 2008;52(4):1318–1324.
  • Appili therapeutics acquires clinical-stage program from FUJIFILM toyama chemical [cited 2020 Jun 23] . Available from: https://drug-dev.com/appili-therapeutics-acquires-clinical-stage-program-from-fujifilm-toyama-chemical/
  • Nakamura I , Yoshimura S , Masaki T , et al. ASP2397: a novel antifungal agent produced by Acremonium persicinum MF-347833. J Antibiot (Tokyo). 2017;70(1):45–51.
  • Nakamura I , Kanasaki R , Yoshikawa K , et al. Discovery of a new antifungal agent ASP2397 using a silkworm model of Aspergillus fumigatus infection. J Antibiot (Tokyo). 2017;70(1):41–44.
  • Nakamura I , Ohsumi K , Takeda S , et al. ASP2397 is a novel natural compound that exhibits rapid and potent fungicidal activity against Aspergillus species through a specific transporter. Antimicrob Agents Chemother. 2019;63(10):e02689–18.
  • Dietl A , Misslinger M , Aguiar M , et al. The siderophore transporter Sit1 determines susceptibility to the antifungal VL-2397. Antimicrob Agents Chemother. 2019;63(10):e00807–19.
  • Drug profile of VL 2397. [cited 2020 Jun 23] . Available from: https://adisinsight.springer.com/drugs/800042213
  • Oura M , Sternberg T , Wright E . A new antifungal antibiotic, amphotericin B. Antibiot Annu. 1955;3:566–573.
  • Loo A , Muhsin S , Walsh T . Toxicokinetic and mechanistic basis for the safety and tolerability of liposomal amphotericin B. Expert Opin Drug Saf. 2013;12(6):881–895.
  • Spellberg B , Witt MD , Beck C . Amphotericin B: is a lipid-formulation gold standard feasible? Clin Infect Dis. 2004;38(2):304–305.
  • Santangelo R , Paderu P , Delmas G , et al. Efficacy of oral cochleate-amphotericin B in a mouse model of systemic candidiasis. Antimicrob Agents Chemother. 2000;44(9):2356–2360.
  • Gonzalez-Lara M , Sifuentes-Osornio J , Ostrosky-Zeichner L . Drugs in clinical development for fungal infections. Drugs. 2017;77(14):1505–1518.
  • Lu R , Hollingsworth C , Qiu J , et al. Efficacy of oral encochleated amphotericin B in a mouse model of cryptococcal meningoencephalitis. mBio. 2019;10(3):e00724–19.
  • MAT2203: LNC formulation of amphotericin B. [cited 2020 Jun 23] . Available from: https://www.matinasbiopharma.com/lnc-pipeline/mat2203-lnc-formulation-of-amphotericin-b
  • Gursoy R , Benita S . Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58(3):173–182.
  • Sharma S , Bajaj H , Bhardwaj P , et al. Development and characterization of self emulsifying drug delivery system of a poorly water soluble drug using natural oil. Acta Pol Pharm. 2012;69(4):713–717.
  • Zanchetta B , Chaud M , Santana M . Self-emulsifying drug delivery systems (SEDDS) in pharmaceutical development. J Adv Chem Eng. 2015;5(3):1000130.
  • iCo therapeutics announces positive clinical outcome - primary endpoint met in phase 1 oral amphotericin B study. [cited 2020 Jun 23] . Available from: https://www.newsfilecorp.com/release/35503/iCo-Therapeutics-Announces-Positive-Clinical-Outcome-Primary-Endpoint-Met-in-Phase-1-Oral-Amphotericin-B-Study
  • iCo therapeutics announces positive secondary endpoint and advancement into later stage clinical trials - phase 1 oral amphotericin B. [cited 2020 Jun 23] . Available from: https://www.dgap.de/dgap/News/corporate/ico-therapeutics-announces-positive-secondary-endpoint-and-advancement-into-later-stage-clinical-trials-phase-oral-amphotericin-b/?newsID=1084687
  • LiverTox: clinical and research information on drug-induced liver injury - itraconazole. [cited 2020 Jun 23] . Available from: https://www.ncbi.nlm.nih.gov/books/NBK548273/
  • Zacks initiates on Pulmatrix . [cited 2020 Jun 23] . Available from: https://ir.pulmatrix.com/Zacks-Initiates-on-Pulmatrix-NASDAQ-PULM
  • Chrystyn H . Methods to identify drug deposition in the lungs following inhalation. Br J Clin Pharmacol. 2001;51(4):289–299.
  • Hava D , Tan L , Johnson P , et al. A phase 1/1b study of PUR1900, an inhaled formulation of itraconazole, in healthy volunteers and asthmatics to study safety, tolerability and pharmacokinetics. Br J Clin Pharmacol. 2020;86(4):723–733.
  • Colley T , Alanio A , Kelly S , et al. In vitro and in vivo antifungal profile of a novel and long-acting inhaled azole, PC945, on Aspergillus fumigatus infection. Antimicrob Agents Chemother. 2017;61(5):e02280–16.
  • Pulmocide Ltd . [cited 2020 Jun 23] . Available from: https://attendris.com/wp-content/uploads/2019/05/Pulmocide.pdf
  • Colley T , Sehra G , Daly L , et al. Antifungal synergy of a topical triazole, PC945, with a systemic triazole against respiratory Aspergillus fumigatus infection. Sci Rep. 2019;9(1):9482.
  • PC945, a novel inhaled azole for treatment of fungal tracheobronchitis post-lung transplantation: a case report. [cited 2020 Jun 23] . Available from: http://pulmocide.com/wp-content/uploads/2019/03/PC945-case-report-vf2-PDF.pdf
  • Levery S , Momany M , Lindsey R , et al. Disruption of the glucosylceramide biosynthetic pathway in Aspergillus nidulans and Aspergillus fumigatus by inhibitors of UDP-Glc: ceramideglucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth. FEBS Lett. 2002;525(1–3):59–64.
  • Rittershaus P , Kechichian T , Allegood J , et al. Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans . J Clin Invest. 2006;116(6):1651–1659. .
  • Oura T , Kajiwara S . Candida albicans sphingolipid C9-methyltransferase is involved in hyphal elongation. Microbiology. 2010;156:1234–1243.
  • Heung L , Luberto C , Del Poeta M . Role of sphingolipids in microbial pathogenesis. Infect Immun. 2006;74(1):28–39.
  • Rollin-Pinheiro R , Singh A , Barreto-Bergter E , et al. Sphingolipids as targets for treatment of fungal infections. Future Med Chem. 2016;8(12):1469–1484.
  • Mor V , Rella A , Farnoud A , et al. Identification of a new class of antifungals targeting the synthesis of fungal sphingolipids. MBio. 2015;6(3):e00647.
  • Lazzarini C , Haranahalli K , Rieger R , et al., Acylhydrazones as antifungal agents targeting the synthesis of fungal sphingolipids. Antimicrob Agents Chemother. 2018;62(5): e00156–18.
  • Fox D , Cruz M , Sia R , et al. Calcineurin regulatory subunit is essential for virulence and mediates interactions with FKBP12-FK506 in Cryptococcus neoformans . Mol Microbiol. 2001;39(4):835–849.
  • Blankenship J , Wormley F , Boyce M , et al. Calcineurin is essential for Candida albicans survival in serum and virulence. Eukaryot Cell. 2003;2(3):422–430.
  • Falloon K , Juvvadi P , Richards A , et al. Characterization of the FKBP12-encoding genes in Aspergillus fumigatus . PLoS One. 2015;10(9):e0137869.
  • Perfect J . The antifungal pipeline: a reality check. Nat Rev Drug Discov. 2017;16(9):603–616.
  • Chow E , Clancey S , Billmyre R , et al. Elucidation of the calcineurin-Crz1 stress response transcriptional network in the human fungal pathogen Cryptococcus neoformans . PLoS Genet. 2017;13(4):e1006667. .
  • Juvvadi P , Lee S , Heitman J , et al. Calcineurin in fungal virulence and drug resistance: prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach. Virulence. 2017;8(2):186–197.
  • Antypenko L , Sadykova Z , Meyer F , et al. Tacrolimus as antifungal agent. Acta Chim Slov. 2019;66:784–791.
  • Lee Y , Lee K , Lee S , et al. In vitro and in vivo assessment of FK506 analogs as novel antifungal drug candidates. Antimicrob Agents Chemother. 2018;62(11):e01627–18.
  • Juvvadi P , Fox III D , Bobay B , et al. Harnessing calcineurin-FK506-FKBP12 crystal structures from invasive fungal pathogens to develop antifungal agents. Nat Commun. 2019;10(1):4275.
  • Heilmann C , Sorgo A , Siliakus A , et al. Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile. Microbiology. 2011;157:2297–2307.
  • Wong S , Kao R , Yuen K , et al. In vitro and in vivo activity of a novel antifungal small molecule against Candida infections. PLoS One. 2014;9(1):e85836.
  • Truong T , Suriyanarayanan T , Zeng G , et al. Use of haploid model of Candida albicans to uncover mechanism of action of a novel antifungal agent. Front Cell Infect Microbiol. 2018;8:164.
  • Jones C , Ellett F , Robertson A , et al. Bifunctional small molecules enhance neutrophil activities against Aspergillus fumigatus in vivo and in vitro . Front Immunol. 2019;10:644.
  • Andersen C , Sonderskov L , Bendstrup E , et al. Voriconazole concentrations in plasma and epithelial lining fluid after inhalation and oral treatment. Basic Clin Pharmacol Toxicol. 2017;121(5):430–434. .
  • Tsui C , Kong E , Jabra-Rizk M . Pathogenesis of Candida albicans biofilm. Pathog Dis. 2016;74(4):ftw018.
  • Panthee S , Paudel A , Hamamoto H , et al. Advantages of the silkworm as an animal model for developing novel antimicrobial agents. Front Microbiol. 2017;8:373.
  • Rajasingham R , Smith R , Park B , et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis. 2017;17(8):873–881.
  • Bill & Melinda gates foundation: what we do. [cited 2020 Jun 23] . Available from: https://www.gatesfoundation.org/what-we-do
  • Del Poeta M . Special issue: novel antifungal drug discovery. J Fungi (Basel). 2016;2(4):33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.