791
Views
9
CrossRef citations to date
0
Altmetric
Review

Novel therapeutic agents for the treatment of diabetic kidney disease

, , &
Pages 1277-1293 | Received 19 May 2020, Accepted 13 Aug 2020, Published online: 14 Sep 2020

References

  • Reutens AT. Epidemiology of diabetic kidney disease. Med Clin North Am. 2013 Jan;97(1):1–18.
  • Lim A. Diabetic nephropathy - complications and treatment. Int J Nephrol Renovasc Dis. 2014;7:361–381.
  • Saran R, Robinson B, Abbott KC, et al. US renal data system 2019 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2020 Jan;75(1S1):A6–A7.
  • Afkarian M, Sachs MC, Kestenbaum B, et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 2013 Feb;24(2):302–308.
  • Toth-Manikowski S, Atta MG. Diabetic kidney disease: pathophysiology and therapeutic targets. J Diabetes Res. 2015;2015:697010.
  • Umanath K, Lewis JB. Update on diabetic nephropathy: core curriculum 2018. Am J Kidney Dis. 2018 Jun;71(6):884–895.
  • Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol. 2017 Dec 7;12(12):2032–2045.
  • Minutolo R, Gabbai FB, Provenzano M, et al. Cardiorenal prognosis by residual proteinuria level in diabetic chronic kidney disease: pooled analysis of four cohort studies. Nephrol Dial Transplant. 2018 Nov 1;33(11):1942–1949.
  • Provenzano M, Coppolino G, De Nicola L, et al. Unraveling cardiovascular risk in renal patients: a new take on old tale. Front Cell Dev Biol. 2019;7:314.
  • Abdul-Ghani MA, DeFronzo RA. Inhibition of renal glucose reabsorption: a novel strategy for achieving glucose control in type 2 diabetes mellitus. Endocr Pract. 2008 Sep;14(6):782–790.
  • Kanai Y, Lee WS, You G, et al. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J Clin Invest. 1994 Jan;93(1):397–404.
  • Cherney DZ, Perkins BA, Soleymanlou N, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014 Feb 4;129(5):587–597.
  • Lioudaki E, Androulakis ES, Whyte M, et al. The effect of sodium-glucose co-transporter-2 (SGLT-2) inhibitors on cardiometabolic profile; beyond the hypoglycaemic action. Cardiovasc Drugs Ther. 2017 Apr;31(2):215–225.
  • Yaribeygi H, Butler AE, Atkin SL, et al. Sodium-glucose cotransporter 2 inhibitors and inflammation in chronic kidney disease: possible molecular pathways. J Cell Physiol. 2018 Jan;234(1):223–230.
  • Ehrenkranz JR, Lewis NG, Kahn CR, et al. Phlorizin: a review. Diabetes Metab Res Rev. 2005 Jan-Feb;21(1):31–38.
  • Grempler R, Thomas L, Eckhardt M, et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab. 2012 Jan;14(1):83–90.
  • Mascitti V, Maurer TS, Robinson RP, et al. Discovery of a clinical candidate from the structurally unique dioxa-bicyclo[3.2.1]octane class of sodium-dependent glucose cotransporter 2 inhibitors. J Med Chem. 2011 Apr 28;54(8):2952–2960.
  • Meng W, Ellsworth BA, Nirschl AA, et al. Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J Med Chem. 2008 Mar 13;51(5):1145–1149.
  • Nomura S, Sakamaki S, Hongu M, et al. Discovery of canagliflozin, a novel C-glucoside with thiophene ring, as sodium-dependent glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes mellitus. J Med Chem. 2010 Sep 9;53(17):6355–6360.
  • Cinti F, Moffa S, Impronta F, et al. Spotlight on ertugliflozin and its potential in the treatment of type 2 diabetes: evidence to date. Drug Des Devel Ther. 2017;11:2905–2919.
  • American Diabetes Association. Introduction: standards of medical care in diabetes-2020. Diabetes Care. 2020 Jan;43(Suppl 1):S1–S2. Available from: https://care.diabetesjournals.org/content/43/Supplement_1/S1.full-text.pdf
  • de Boer IH. The expanding resume of SGLT2 inhibitors. Lancet Diabetes Endocrinol. 2019 Aug;7(8):585–587.
  • Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015 Nov 26;373(22):2117–2128.
  • Wanner C, Inzucchi SE, Zinman B. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016 Nov 3;375(18):1801–1802.
  • Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017 Aug 17;377(7):644–657.
  • Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019 Jun 13;380(24):2295–2306.
  • Jardine MJ, Mahaffey KW, Neal B, et al. The canagliflozin and renal endpoints in diabetes with established nephropathy clinical evaluation (CREDENCE) study rationale, design, and baseline characteristics. Am J Nephrol. 2017 Dec 13;46(6):462–472.
  • Mosenzon O, Wiviott SD, Cahn A, et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 2019 Aug;7(8):606–617.
  • Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019 Jan 24;380(4):347–357.
  • Cannon CP, Kumbhani DJ, Bhatt DL. Evaluation of ertugliflozin efficacy and safety cardiovascular outcomes trial - VERTIS CV. Am Diabetes Assoc Virtual Meeting. 2020 June 16.
  • van Raalte DH, Bjornstad P, Persson F, et al. The impact of sotagliflozin on renal function, albuminuria, blood pressure, and hematocrit in adults with type 1 diabetes. Diabetes Care. 2019 Oct;42(10):1921–1929.
  • A study to evaluate safety and effects of sotagliflozin dose 1 and dose 2 on glucose control in patients with type 2 diabetes, severe impairment of kidney function and inadequate blood sugar control. [cited 2020 Aug 7]. Available from: https://ClinicalTrials.gov/show/NCT03242018
  • Safety and efficacy study of sotagliflozin on glucose control in patients with type 2 diabetes, moderate impairment of kidney function, and inadequate blood sugar control. [cited 2020 Aug 7]. Available from: https://ClinicalTrials.gov/show/NCT03242252
  • Effect of sotagliflozin on cardiovascular and renal events in patients with type 2 diabetes and moderate renal impairment who are at cardiovascular risk. [cited 2020 Aug 7]. Available from: https://ClinicalTrials.gov/show/NCT03315143
  • Dekkers CCJ, Gansevoort RT. Sodium-glucose cotransporter 2 inhibitors: extending the indication to non-diabetic kidney disease? Nephrol Dial Transplant. 2020 Jan 1;35(Suppl 1):i33–i42.
  • Filippatos TD, Tsimihodimos V, Elisaf MS. Mechanisms of blood pressure reduction with sodium-glucose co-transporter 2 (SGLT2) inhibitors. Expert Opin Pharmacother. 2016 Aug;17(12):1581–1583.
  • Tsimihodimos V, Filippatos TD, Elisaf MS. SGLT2 inhibitors and the kidney: effects and mechanisms. Diabetes Metab Syndr. 2018 Nov;12(6):1117–1123.
  • Cherney DZI, Dekkers CCJ, Barbour SJ, et al. Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): a randomised, double-blind, crossover trial. Lancet Diabetes Endocrinol. 2020 Jul;8(7):582–593.
  • Heerspink HJL, Stefansson BV, Chertow GM, et al. Rationale and protocol of the dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) randomized controlled trial. Nephrol Dial Transplant. 2020 Feb 1;35(2):274–282.
  • Herrington WG, Preiss D, Haynes R, et al. The potential for improving cardio-renal outcomes by sodium-glucose co-transporter-2 inhibition in people with chronic kidney disease: a rationale for the EMPA-KIDNEY study. Clin Kidney J. 2018 Dec;11(6):749–761.
  • Farxiga Phase III DAPA-CKD trial will be stopped early after overwhelming efficacy in patients with chronic kidney disease [2020 August 08; cited 2020 Aug 7]. Available from: https://www.astrazeneca.com/media-centre/press-releases/2020/farxiga-phase-iii-dapa-ckd-trial-will-be-stopped-early-after-overwhelming-efficacy-in-patients-with-chronic-kidney-disease.html
  • McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019 Nov 21;381(21):1995–2008.
  • Anker SD, Butler J, Filippatos GS, et al. Evaluation of the effects of sodium-glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality in patients with chronic heart failure and a preserved ejection fraction: rationale for and design of the EMPEROR-preserved trial. Eur J Heart Fail. 2019 Oct;21(10):1279–1287.
  • Packer M, Butler J, Filippatos GS, et al. Evaluation of the effect of sodium-glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality of patients with chronic heart failure and a reduced ejection fraction: rationale for and design of the EMPEROR-Reduced trial. Eur J Heart Fail. 2019 Oct;21(10):1270–1278.
  • Dillon JS, Tanizawa Y, Wheeler MB, et al. Cloning and functional expression of the human glucagon-like peptide-1 (GLP-1) receptor. Endocrinology. 1993 Oct;133(4):1907–1910.
  • Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther. 2007 Mar;113(3):546–593.
  • Foster D, Ahmed K. Na+-dependent phosphorylation of the rat brain (Na+ + K+)-ATPase. Possible non-equivalent activation sites for Na+. Biochim Biophys Acta. 1976 Mar 11;429(1):258–273.
  • Orskov C, Holst JJ, Nielsen OV. Effect of truncated glucagon-like peptide-1 [proglucagon-(78-107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology. 1988 Oct;123(4):2009–2013.
  • Mentlein R. Dipeptidyl-peptidase IV (CD26)–role in the inactivation of regulatory peptides. Regul Pept. 1999 Nov 30;85(1):9–24.
  • Goke R, Fehmann HC, Linn T, et al. Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J Biol Chem. 1993 Sep 15;268(26):19650–19655.
  • Thorens B, Porret A, Buhler L, et al. Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9-39) an antagonist of the receptor. Diabetes. 1993 Nov;42(11):1678–1682.
  • Edwards CM, Stanley SA, Davis R, et al. Exendin-4 reduces fasting and postprandial glucose and decreases energy intake in healthy volunteers. Am J Physiol Endocrinol Metab. 2001 Jul;281(1):E155–61.
  • Thorkildsen C, Neve S, Larsen BD, et al. Glucagon-like peptide 1 receptor agonist ZP10A increases insulin mRNA expression and prevents diabetic progression in db/db mice. J Pharmacol Exp Ther. 2003 Nov;307(2):490–496.
  • Werner U, Haschke G, Herling AW, et al. Pharmacological profile of lixisenatide: A new GLP-1 receptor agonist for the treatment of type 2 diabetes. Regul Pept. 2010 Sep 24;164(2–3):58–64.
  • Agerso H, Jensen LB, Elbrond B, et al. The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia. 2002 Feb;45(2):195–202.
  • Elbrond B, Jakobsen G, Larsen S, et al. Pharmacokinetics, pharmacodynamics, safety, and tolerability of a single-dose of NN2211, a long-acting glucagon-like peptide 1 derivative, in healthy male subjects. Diabetes Care. 2002 Aug;25(8):1398–1404.
  • Madsen K, Knudsen LB, Agersoe H, et al. Structure-activity and protraction relationship of long-acting glucagon-like peptide-1 derivatives: importance of fatty acid length, polarity, and bulkiness. J Med Chem. 2007 Nov 29;50(24):6126–6132.
  • Lau J, Bloch P, Schaffer L, et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J Med Chem. 2015 Sep 24;58(18):7370–7380.
  • Rodbard HW, Bellary S, Hramiak I, et al. GREATER COMBINED REDUCTIONS IN HbA1C >/=1.0% AND WEIGHT >/=5.0% WITH SEMAGLUTIDE VERSUS COMPARATORS IN TYPE 2 DIABETES. Endocr Pract. 2019 Jun;25(6):589–597.
  • Baggio LL, Huang Q, Brown TJ, et al. A recombinant human glucagon-like peptide (GLP)-1-albumin protein (albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes. 2004 Sep;53(9):2492–2500.
  • Barrington P, Chien JY, Tibaldi F, et al. LY2189265, a long-acting glucagon-like peptide-1 analogue, showed a dose-dependent effect on insulin secretion in healthy subjects. Diabetes Obes Metab. 2011 May;13(5):434–438.
  • Glaesner W, Vick AM, Millican R, et al. Engineering and characterization of the long-acting glucagon-like peptide-1 analogue LY2189265, an Fc fusion protein. Diabetes Metab Res Rev. 2010 May;26(4):287–296.
  • Muskiet MHA, Tonneijck L, Huang Y, et al. Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2018 Nov;6(11):859–869.
  • Bethel MA, Mentz RJ, Merrill P, et al. Microvascular and cardiovascular outcomes according to renal function in patients treated with once-weekly exenatide: insights from the EXSCEL trial. Diabetes Care. 2020 Feb;43(2):446–452.
  • Bethel MA, Mentz RJ, Merrill P, et al. Renal outcomes in the exenatide study of cardiovascular event lowering (EXSCEL). Diabetes. 2018;67(Supplement 1):522–P.
  • Mann JFE, Orsted DD, Brown-Frandsen K, et al. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med. 2017 Aug 31;377(9):839–848.
  • Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016 Jul 28;375(4):311–322.
  • Tuttle KR, Lakshmanan MC, Rayner B, et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 2018 Aug;6(8):605–617.
  • Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet. 2019 Jul 13;394(10193):131–138.
  • Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019 Jul 13;394(10193):121–130.
  • Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016 Nov 10;375(19):1834–1844.
  • Hramiak I, Vilsbøll T, Gumprecht J, et al. Semaglutide treatment and renal function in the SUSTAIN 6 trial. Can J Diabetes. 2018;42(5):S42.
  • VILSBØLL T, GUMPRECHT J, SILVER RJ, et al. Semaglutide treatment and renal function in the SUSTAIN 6 trial. Diabetes. 2018;67(Supplement 1):1084–P.
  • Green JB, Hernandez AF, D’Agostino RB, et al. Harmony Outcomes: A randomized, double-blind, placebo-controlled trial of the effect of albiglutide on major cardiovascular events in patients with type 2 diabetes mellitus-Rationale, design, and baseline characteristics. Am Heart J. 2018;203:30–38.
  • Muskiet MHA, Tonneijck L, Smits MM, et al. GLP-1 and the kidney: from physiology to pharmacology and outcomes in diabetes. Nat Rev Nephrol. 2017 Oct;13(10):605–628.
  • van Baar MJB, van Raalte DH, Muskiet MHA. GLP-1 receptor agonists, CKD, and eGFR trajectory. Lancet Diabetes Endocrinol. 2018 Oct;6(10):764–765.
  • A research study to see how semaglutide works compared to placebo in people with type 2 diabetes and chronic kidney disease. [cited 2020 Aug 7]. Available from: https://ClinicalTrials.gov/show/NCT03819153
  • Kim D, Wang L, Beconi M, et al. (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)- yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem. 2005 Jan 13;48(1):141–151.
  • Augeri DJ, Robl JA, Betebenner DA, et al. Discovery and preclinical profile of Saxagliptin (BMS-477118): a highly potent, long-acting, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem. 2005 Jul 28;48(15):5025–5037.
  • Feng J, Zhang Z, Wallace MB, et al. Discovery of alogliptin: a potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV. J Med Chem. 2007 May 17;50(10):2297–2300.
  • Eckhardt M, Langkopf E, Mark M, et al. 8-(3-(R)-aminopiperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylme thyl)-3,7-dihydropurine-2,6-dione (BI 1356), a highly potent, selective, long-acting, and orally bioavailable DPP-4 inhibitor for the treatment of type 2 diabetes. J Med Chem. 2007 Dec 27;50(26):6450–6453.
  • Thomas L, Eckhardt M, Langkopf E, et al. (R)-8-(3-amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylm ethyl)-3,7-dihydro-purine-2,6-dione (BI 1356), a novel xanthine-based dipeptidyl peptidase 4 inhibitor, has a superior potency and longer duration of action compared with other dipeptidyl peptidase-4 inhibitors. J Pharmacol Exp Ther. 2008 Apr;325(1):175–182.
  • Kang YM, Jung CH. Effects of incretin-based therapies on diabetic microvascular complications. Endocrinol Metab (Seoul). 2017 Sep;32(3):316–325.
  • Mulvihill EE, Drucker DJ. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev. 2014 Dec;35(6):992–1019.
  • Mann JF, Green D, Jamerson K, et al. Avosentan for overt diabetic nephropathy. J Am Soc Nephrol. 2010 Mar;21(3):527–535.
  • Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013 Oct 3;369(14):1317–1326.
  • Groop PH, Cooper ME, Perkovic V, et al. Linagliptin and its effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction: the randomized MARLINA-T2D trial. Diabetes Obes Metab. 2017 Nov;19(11):1610–1619.
  • Mosenzon O, Leibowitz G, Bhatt DL, et al. Effect of saxagliptin on renal outcomes in the SAVOR-TIMI 53 trial. Diabetes Care. 2017 Jan;40(1):69–76.
  • Bae JH, Kim S, Park EG, et al. Effects of dipeptidyl peptidase-4 inhibitors on renal outcomes in patients with type 2 diabetes: a systematic review and meta-analysis. Endocrinol Metab (Seoul). 2019 Mar;34(1):80–92.
  • Rosenstock J, Perkovic V, Johansen OE, et al. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: the CARMELINA randomized clinical trial. JAMA. 2019 Jan 1;321(1):69–79.
  • Masaki T. The discovery, the present state, and the future prospects of endothelin. J Cardiovasc Pharmacol. 1989;13 Suppl 5:S1-4; discussion S18.
  • Kohan DE, Rossi NF, Inscho EW, et al. Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev. 2011 Jan;91(1):1–77.
  • Inscho EW, Imig JD, Cook AK, et al. ETA and ETB receptors differentially modulate afferent and efferent arteriolar responses to endothelin. Br J Pharmacol. 2005 Dec;146(7):1019–1026.
  • Schildroth J, Rettig-Zimmermann J, Kalk P, et al. Endothelin type A and B receptors in the control of afferent and efferent arterioles in mice. Nephrol Dial Transplant. 2011 Mar;26(3):779–789.
  • Morigi M, Buelli S, Angioletti S, et al. In response to protein load podocytes reorganize cytoskeleton and modulate endothelin-1 gene: implication for permselective dysfunction of chronic nephropathies. Am J Pathol. 2005 May;166(5):1309–1320.
  • Saleh MA, Boesen EI, Pollock JS, et al. Endothelin receptor A-specific stimulation of glomerular inflammation and injury in a streptozotocin-induced rat model of diabetes. Diabetologia. 2011 Apr;54(4):979–988.
  • Gerstung M, Roth T, Dienes HP, et al. Endothelin-1 induces NF-kappaB via two independent pathways in human renal tubular epithelial cells. Am J Nephrol. 2007;27(3):294–300.
  • Saleh MA, Boesen EI, Pollock JS, et al. Endothelin-1 increases glomerular permeability and inflammation independent of blood pressure in the rat. Hypertension. 2010 Nov;56(5):942–949.
  • Simonson MS, Ismail-Beigi F. Endothelin-1 increases collagen accumulation in renal mesangial cells by stimulating a chemokine and cytokine autocrine signaling loop. J Biol Chem. 2011 Apr 1;286(13):11003–11008.
  • Zou HH, Wang L, Zheng XX, et al. Endothelial cells secreted endothelin-1 augments diabetic nephropathy via inducing extracellular matrix accumulation of mesangial cells in ETBR(-/-) mice. Aging (Albany NY). 2019 Mar 29;11(6):1804–1820.
  • Barton M, Shaw S, d’Uscio LV, et al. Angiotensin II increases vascular and renal endothelin-1 and functional endothelin converting enzyme activity in vivo: role of ETA receptors for endothelin regulation. Biochem Biophys Res Commun. 1997 Sep 29;238(3):861–865.
  • Kopp UC, Cicha MZ, Smith LA. Activation of endothelin-a receptors contributes to angiotensin-induced suppression of renal sensory nerve activation. Hypertension. 2007 Jan;49(1):141–147.
  • Benigni A, Zola C, Corna D, et al. Blocking both type A and B endothelin receptors in the kidney attenuates renal injury and prolongs survival in rats with remnant kidney. Am J Kidney Dis. 1996 Mar;27(3):416–423.
  • Gomez-Garre D, Largo R, Liu XH, et al. An orally active ETA/ETB receptor antagonist ameliorates proteinuria and glomerular lesions in rats with proliferative nephritis. Kidney Int. 1996 Sep;50(3):962–972.
  • Saleh MA, Pollock JS, Pollock DM. Distinct actions of endothelin A-selective versus combined endothelin A/B receptor antagonists in early diabetic kidney disease. J Pharmacol Exp Ther. 2011 Jul;338(1):263–270.
  • Honing ML, Hijmering ML, Ballard DE, et al. Selective ET(A) receptor antagonism with ABT-627 attenuates all renal effects of endothelin in humans. J Am Soc Nephrol. 2000 Aug;11(8):1498–1504.
  • Opgenorth TJ, Adler AL, Calzadilla SV, et al. Pharmacological characterization of A-127722: an orally active and highly potent ETA-selective receptor antagonist. J Pharmacol Exp Ther. 1996 Feb;276(2):473–481.
  • Winn M, von Geldern TW, Opgenorth TJ, et al. 2,4-Diarylpyrrolidine-3-carboxylic acids–potent ETA selective endothelin receptor antagonists. 1. Discovery of A-127722. J Med Chem. 1996 Mar 1;39(5):1039–1048.
  • Heerspink HJL, Parving HH, Andress DL, et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet. 2019 May 11;393(10184):1937–1947.
  • Doria A, Galecki AT, Spino C, et al. Serum urate lowering with allopurinol and kidney function in type 1 diabetes. N Engl J Med. 2020;382(26):2493–2503.
  • Badve SV, Pascoe EM, Tiku A, et al. Effects of allopurinol on the progression of chronic kidney disease. N Engl J Med. 2020 Jun 25;382(26):2504–2513.
  • Landau RL, Lugibihl K. Inhibition of the sodium-retaining influence of aldosterone by progesterone. J Clin Endocrinol Metab. 1958 Nov;18(11):1237–1245.
  • Kagawa CM, Cella JA, Van Arman CG. Action of new steroids in blocking effects of aldosterone and desoxycorticosterone on salt. Science. 1957 Nov 15;126(3281):1015–1016.
  • de Gasparo M, Joss U, Ramjoue HP, et al. Three new epoxy-spirolactone derivatives: characterization in vivo and in vitro. J Pharmacol Exp Ther. 1987 Feb;240(2):650–656.
  • Barfacker L, Kuhl A, Hillisch A, et al. Discovery of BAY 94-8862: a nonsteroidal antagonist of the mineralocorticoid receptor for the treatment of cardiorenal diseases. ChemMedChem. 2012 Aug;7(8):1385–1403.
  • Barrera-Chimal J, Girerd S, Jaisser F. Mineralocorticoid receptor antagonists and kidney diseases: pathophysiological basis. Kidney Int. 2019 Aug;96(2):302–319.
  • Nishiyama A. Pathophysiological mechanisms of mineralocorticoid receptor-dependent cardiovascular and chronic kidney disease. Hypertens Res. 2019 Mar;42(3):293–300.
  • Lattenist L, Lechner SM, Messaoudi S, et al. Nonsteroidal mineralocorticoid receptor antagonist finerenone protects against acute kidney injury-mediated chronic kidney disease: role of oxidative stress. Hypertension. 2017 May;69(5):870–878.
  • Bakris GL, Agarwal R, Chan JC, et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA. 2015 Sep 1;314(9):884–894.
  • Katayama S, Yamada D, Nakayama M, et al. A randomized controlled study of finerenone versus placebo in Japanese patients with type 2 diabetes mellitus and diabetic nephropathy. J Diabetes Complications. 2017 Apr;31(4):758–765.
  • Efficacy and safety of finerenone in subjects with type 2 diabetes mellitus and diabetic kidney disease. [cited 2020 Aug 7]. Available from: https://ClinicalTrials.gov/show/NCT02540993
  • Bayer’s finerenone meets primary endpoint in Phase III FIDELIO-DKD renal outcomes study in patients with chronic kidney disease and type 2 diabetes [Internet]. 2020 July 9 [cited 2020 Aug 7]. Available from: https://media.bayer.de/baynews/baynews.nsf/id/Bayers-finerenone-meets-primary-endpoint-Phase-III-FIDELIO-DKD-renal-outcomes-study-patients-chronic?OpenDocument&sessionID=1596737220
  • E efficacy and safety of finerenone in subjects with type 2 diabetes mellitus and the clinical diagnosis of diabetic kidney disease. [cited 2020 Aug 7]. Available from: https://ClinicalTrials.gov/show/NCT02545049
  • Study to evaluate the efficacy (effect on disease) and safety of finerenone on morbidity (events indicating disease worsening) and mortality (death rate) in participants with heart failure and left ventricular ejection fraction (proportion of blood expelled per heart stroke) greater or equal to 40%. [cited 2020 Aug 7]. Available from: https://ClinicalTrials.gov/show/NCT04435626
  • Ichijo H, Nishida E, Irie K, et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science. 1997 Jan 3;275(5296):90–94.
  • Ren G, Huynh C, Bijian K, et al. Role of apoptosis signal-regulating kinase 1 in complement-mediated glomerular epithelial cell injury. Mol Immunol. 2008 Apr;45(8):2236–2246.
  • Ma FY, Tesch GH, Nikolic-Paterson DJ. ASK1/p38 signaling in renal tubular epithelial cells promotes renal fibrosis in the mouse obstructed kidney. Am J Physiol Renal Physiol. 2014 Dec 1;307(11):F1263–73.
  • Liles JT, Corkey BK, Notte GT, et al. ASK1 contributes to fibrosis and dysfunction in models of kidney disease. J Clin Invest. 2018 Oct 1;128(10):4485–4500.
  • Terada Y, Inoshita S, Kuwana H, et al. Important role of apoptosis signal-regulating kinase 1 in ischemic acute kidney injury. Biochem Biophys Res Commun. 2007 Dec 28;364(4):1043–1049.
  • El Eter E. NQDI 1, an inhibitor of ASK1 attenuates acute ischemic renal injury by modulating oxidative stress and cell death. Cardiovasc Hematol Agents Med Chem. 2013 Sep;11(3):179–186.
  • Tesch GH, Ma FY, Nikolic-Paterson DJ. ASK1: a new therapeutic target for kidney disease. Am J Physiol Renal Physiol. 2016 Aug 1;311(2):F373–81.
  • Wang Y, Ji H-X, Zheng J-N, et al. Protective effect of selenite on renal ischemia/reperfusion injury through inhibiting ASK1–MKK3–p38 signal pathway. Redox Rep. 2009;14(6):243–250.
  • Amos LA, Ma FY, Tesch GH, et al. ASK1 1 inhibitor treatment suppresses p38/JNK signalling with reduced kidney inflammation and fibrosis in rat crescentic glomerulonephritis. J Cell Mol Med. 2018 Sep;22(9):4522–4533.
  • Tesch GH, Ma FY, Han Y, et al. ASK1 inhibitor halts progression of diabetic nephropathy in Nos3-deficient mice. Diabetes. 2015 Nov;64(11):3903–3913.
  • Budas GR, Boehm M, Kojonazarov B, et al. ASK1 inhibition halts disease progression in preclinical models of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2018 Feb 1;197(3):373–385.
  • Chertow GM, Pergola PE, Chen F, et al. Effects of selonsertib in patients with diabetic kidney disease. J Am Soc Nephrol. 2019 Oct;30(10):1980–1990.
  • Efficacy and safety of selonsertib in participants with moderate to advanced diabetic kidney disease. [cited 2020 Aug 7]. Available from: https://ClinicalTrials.gov/show/NCT04026165
  • Berthier CC, Zhang H, Schin M, et al. Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes. 2009 Feb;58(2):469–477.
  • Marrero MB, Banes-Berceli AK, Stern DM, et al. Role of the JAK/STAT signaling pathway in diabetic nephropathy. Am J Physiol Renal Physiol. 2006 Apr;290(4):F762–8.
  • Simon AR, Rai U, Fanburg BL, et al. Activation of the JAK-STAT pathway by reactive oxygen species. Am J Physiol. 1998 Dec;275(6):C1640–52.
  • Wang X, Shaw S, Amiri F, et al. Inhibition of the JAK/STAT signaling pathway prevents the high glucose-induced increase in tgf-beta and fibronectin synthesis in mesangial cells. Diabetes. 2002 Dec;51(12):3505–3509.
  • Brosius FC, Tuttle KR, Kretzler M. JAK inhibition in the treatment of diabetic kidney disease. Diabetologia. 2016 Aug;59(8):1624–1627.
  • Tuttle KR, Brosius FC 3rd, Adler SG, et al. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a Phase 2 randomized controlled clinical trial. Nephrol Dial Transplant. 2018 Nov 1;33(11):1950–1959.
  • Salmi M, Jalkanen S. Vascular adhesion protein-1: a cell surface amine oxidase in translation. Antioxid Redox Signal. 2019 Jan 20;30(3):314–332.
  • Koskinen K, Vainio PJ, Smith DJ, et al. Granulocyte transmigration through the endothelium is regulated by the oxidase activity of vascular adhesion protein-1 (VAP-1). Blood. 2004 May 1;103(9):3388–3395.
  • Noonan T, Lukas S, Peet GW, et al. The oxidase activity of vascular adhesion protein-1 (VAP-1) is essential for function. Am J Clin Exp Immunol. 2013;2(2):172–185.
  • Li H-Y, Wei J-N, Lin M-S, et al. Serum vascular adhesion protein-1 is increased in acute and chronic hyperglycemia. Clin Chim Acta. 2009 Jun 27;404(2):149–153.
  • Lin M-S, Li H-Y, Wei J-N, et al. Serum vascular adhesion protein-1 is higher in subjects with early stages of chronic kidney disease. Clin Biochem. 2008 Nov;41(16–17):1362–1367.
  • de Zeeuw D, Renfurm RW, Bakris G, et al. Efficacy of a novel inhibitor of vascular adhesion protein-1 in reducing albuminuria in patients with diabetic kidney disease (ALBUM): a randomised, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol. 2018 Dec;6(12):925–933.
  • Bhoola KD, Figueroa CD, Worthy K. Bioregulation of kinins: kallikreins, kininogens, and kininases.. Pharmacol Rev. 1992 Mar;44(1):1–80.
  • Spillmann F, Van Linthout S, Schultheiss H-P, et al. Cardioprotective mechanisms of the kallikrein–kinin system in diabetic cardiopathy. Curr Opin Nephrol Hypertens. 2006 Jan;15(1):22–29.
  • Liu W, Yang Y, Liu Y, et al. Exogenous kallikrein protects against diabetic nephropathy. Kidney Int. 2016 Nov;90(5):1023–1036.
  • Steven FS, Johnson J. Fluorescent studies directed towards the location of abnormal epithelial cells in cervical smears. Cytopathology. 1990;1(4):217–222.
  • Multiple doses of DM199 in patients with chronic kidney disease. [cited 2020 Aug 7]. Available from: https://ClinicalTrials.gov/show/NCT04123613
  • Hryciw DH, McAinch AJ. Cannabinoid receptors in the kidney. Curr Opin Nephrol Hypertens. 2016 Sep;25(5):459–464.
  • Jenkin KA, McAinch AJ, Zhang Y, et al. Elevated cannabinoid receptor 1 and G protein-coupled receptor 55 expression in proximal tubule cells and whole kidney exposed to diabetic conditions. Clin Exp Pharmacol Physiol. 2015 Mar;42(3):256–262.
  • Jourdan T, Park JK, Varga ZV, et al. Cannabinoid-1 receptor deletion in podocytes mitigates both glomerular and tubular dysfunction in a mouse model of diabetic nephropathy. Diabetes Obes Metab. 2018 Mar;20(3):698–708.
  • Janiak P, Poirier B, Bidouard J-P, et al. Blockade of cannabinoid CB1 receptors improves renal function, metabolic profile, and increased survival of obese Zucker rats. Kidney Int. 2007 Dec;72(11):1345–1357.
  • Hinden L, Udi S, Drori A, et al. Modulation of renal GLUT2 by the cannabinoid-1 receptor: implications for the treatment of diabetic nephropathy. J Am Soc Nephrol. 2018 Feb;29(2):434–448.
  • Lim JC, Lim SK, Park MJ, et al. Cannabinoid receptor 1 mediates high glucose-induced apoptosis via endoplasmic reticulum stress in primary cultured rat mesangial cells. Am J Physiol Renal Physiol. 2011 Jul;301(1):F179–88.
  • Kilsdonk EP, Yancey PG, Stoudt GW, et al. Cellular cholesterol efflux mediated by cyclodextrins. J Biol Chem. 1995 Jul 21;270(29):17250–17256.
  • Lopez CA, de Vries AH, Marrink SJ. Molecular mechanism of cyclodextrin mediated cholesterol extraction. PLoS Comput Biol. 2011 Mar;7(3):e1002020.
  • Zimmer S, Grebe A, Bakke SS, et al. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Sci Transl Med. 2016 Apr 6;8(333):333ra50.
  • Herman-Edelstein M, Scherzer P, Tobar A, et al. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J Lipid Res. 2014 Mar;55(3):561–572.
  • Merscher-Gomez S, Guzman J, Pedigo CE, et al. Cyclodextrin protects podocytes in diabetic kidney disease. Diabetes. 2013 Nov;62(11):3817–3827.
  • Tsun JG, Yung S, Chau MK, et al. Cellular cholesterol transport proteins in diabetic nephropathy. PLoS One. 2014;9(9):e105787.
  • ZyVersa Therapeutics I. VAR 200, CHOLESTEROL EFFLUX MEDIATOR, 2HPΒCD. [ cited 2020 May 12; updated 2020 Aug 7]. Available from: https://www.zyversa.com/renal-lipids/var-200-cholesterol-efflux-mediator-2hpbcd
  • EMPA-KIDNEY (The study of heart and kidney protection with empagliflozin). [cited 2020 Aug 7]. Available from: https://ClinicalTrials.gov/show/NCT03594110
  • A study to evaluate the effect of dapagliflozin on renal outcomes and cardiovascular mortality in patients with chronic kidney disease. [cited 2020 Aug 7]. Available from: https://ClinicalTrials.gov/show/NCT03036150
  • Gewin L, Zent R. How does TGF-β mediate tubulointerstitial fibrosis? Semin Nephrol. 2012 May;32(3):228–235.
  • Liang X, Wang P, Chen B, et al. Glycogen synthase kinase 3β hyperactivity in urinary exfoliated cells predicts progression of diabetic kidney disease. Kidney Int. 2020 Jan;97(1):175–192.
  • Freedman BI, Bowden DW, Sale MM, et al. Genetic susceptibility contributes to renal and cardiovascular complications of type 2 diabetes mellitus. Hypertension. 2006 Jul;48(1):8–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.