666
Views
4
CrossRef citations to date
0
Altmetric
Review

Recent progress in development of cyclin-dependent kinase 7 inhibitors for cancer therapy

, , , &
Pages 61-76 | Received 15 Apr 2020, Accepted 09 Nov 2020, Published online: 11 Jan 2021

References

  • Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014;15(6):122.
  • Hydbring P, Malumbres M, Sicinski P. Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. Nat Rev Mol Cell Biol. 2016 May;17(5):280–292.
  • Peyressatre M, Prevel C, Pellerano M, et al. Targeting cyclin-dependent kinases in human cancers: from small molecules to peptide inhibitors. Cancers (Basel). 2015 Mar;7(1):179–237.
  • Pandey K, An H-J, Kim SK, et al. Molecular mechanisms of resistance to CDK4/6 inhibitors in breast cancer: A review. Int J Cancer. 2019 Sep 1;145(5):1179–1188.
  • O’Leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol. 2016 Jul;13(7):417–430.
  • Tadesse S, Caldon EC, Tilley W, et al. Cyclin-dependent kinase 2 inhibitors in cancer therapy: an update. J Med Chem. 2019 May 9;62(9):4233–4251.
  • Asghar U, Witkiewicz AK, Turner NC, et al. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov. 2015 Feb;14(2):130–146.
  • Rice AP. Roles of CDKs in RNA polymerase II transcription of the HIV-1 genome. Transcription. 2019 Apr;10(2):111–117.
  • Kwiatkowski N, Zhang T, Rahl PB, et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature. 2014 Jul 31;511(7511):616–620.
  • Teng Y, Lu K, Zhang Q, et al. Recent advances in the development of cyclin-dependent kinase 7 inhibitors. Eur J Med Chem. 2019 Dec;183(1):111641.
  • Lolli G, Lowe ED, Brown NR, et al. The crystal structure of human CDK7 and its protein recognition properties. Structure. 2004 Nov;12(11):2067–2079.
  • Hu S, Marineau JJ, Rajagopal N, et al. Discovery and characterization of SY-1365, a selective, covalent inhibitor of CDK7. Cancer Res. 2019 Jul 1;79(13):3479–3491.
  • Fisher RP. Cdk7: a kinase at the core of transcription and in the crosshairs of cancer drug discovery. Transcription. 2019 Apr;10(2):47–56.
  • Glover-Cutter K, Larochelle S, Erickson B, et al. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol Cell Biol. 2009 Oct;29(20):5455–5464.
  • Adelman K, Lis JT. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet. 2012 Oct;13(10):720–731.
  • Fisher RP. Secrets of a double agent: CDK7 in cell-cycle control and transcription. J Cell Sci. 2005 Nov 15;118(Pt 22):5171–5180.
  • Boehning M, Dugast-Darzacq C, Rankovic M, et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat Struct Mol Biol. 2018 Sep;25(9):833–840.
  • Nilson KA, Guo J, Turek ME, et al. THZ1 reveals roles for CDK7 in co-transcriptional capping and pausing. Mol Cell. 2015 Aug 20;59(4):576–587.
  • Sampathi S, Acharya P, Zhao Y, et al. The CDK7 inhibitor THZ1 alters RNA polymerase dynamics at the 5ʹ and 3ʹ ends of genes. Nucleic Acids Res. 2019 May 7;47(8):3921–3936.
  • Bartkowiak B, Liu P, Phatnani HP, et al. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev. 2010 Oct 15;24(20):2303–2316.
  • Davidson L, Muniz L, West S. 3ʹ end formation of pre-mRNA and phosphorylation of Ser2 on the RNA polymerase II CTD are reciprocally coupled in human cells. Genes Dev. 2014 Feb 15;28(4):342–356.
  • He G, Yang X, Wang G, et al. Cdk7 is required for activity-dependent neuronal gene expression, long-lasting synaptic plasticity and long-term memory. Front Mol Neurosci. 2017 Nov;10(7):365.
  • Ji H, Chen Y, Castillo-Armengol J, et al. CDK7 mediates the beta-adrenergic signaling in thermogenic brown and white adipose tissues. iScience. 2020 Jun 26;23(6):101163.
  • Bradner JE, Hnisz D, Young RA. Transcriptional addiction in cancer. Cell. 2017 Feb 9;168(4):629–643.
  • Bywater MJ, Pearson RB, McArthur GA, et al. Dysregulation of the basal RNA polymerase transcription apparatus in cancer. Nat Rev Cancer. 2013 May;13(5):299–314.
  • Ferguson FM, Gray NS. Kinase inhibitors: the road ahead. Nat Rev Drug Discov. 2018 May;17(5):353–377.
  • Eilers M, Eisenman RN. Myc’s broad reach. Genes Dev. 2008 Oct 15;22(20):2755–2766.
  • Wasylishen AR, Penn LZ. Myc: the beauty and the beast. Genes Cancer. 2010 Jun;1(6):532–541.
  • Chipumuro E, Marco E, Christensen CL, et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell. 2014 Nov 20;159(5):1126–1139.
  • Lu P, Geng J, Zhang L, et al. THZ1 reveals CDK7-dependent transcriptional addictions in pancreatic cancer. Oncogene. 2019 May;38(20):3932–3945.
  • Christensen CL, Kwiatkowski N, Abraham BJ, et al. Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Cancer Cell. 2014 Dec 8;26(6):909–922.
  • Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007 Aug 1;13(15 Pt 1):4429–4434.
  • Li B, Ni Chonghaile T, Fan Y, et al. Therapeutic rationale to target highly expressed CDK7 conferring poor outcomes in triple-negative breast cancer. Cancer Res. 2017 Jul 15;77(14):3834–3845.
  • Wang Y, Zhang T, Kwiatkowski N, et al. CDK7-dependent transcriptional addiction in triple-negative breast cancer. Cell. 2015 Sep 24;163(1):174–186.
  • Reese JM, Bruinsma ES, Monroe DG, et al. ERbeta inhibits cyclin dependent kinases 1 and 7 in triple negative breast cancer. Oncotarget. 2017 Nov 14;8(57):96506–96521.
  • Ingham PW, Nakano Y, Seger C. Mechanisms and functions of Hedgehog signalling across the metazoa. Nat Rev Genet. 2011 Jun;12(6):393–406.
  • Liu F, Jiang W, Sui Y, et al. CDK7 inhibition suppresses aberrant hedgehog pathway and overcomes resistance to smoothened antagonists. Proc Natl Acad Sci U S A. 2019 Jun 25;116(26):12986–12995.
  • Zhang Z, Peng H, Wang X, et al. Preclinical efficacy and molecular mechanism of targeting CDK7-dependent transcriptional addiction in ovarian cancer. Mol Cancer Ther. 2017 Sep;16(9):1739–1750.
  • Zhong L, Yang S, Jia Y, et al. Inhibition of cyclin-dependent kinase 7 suppresses human hepatocellular carcinoma by inducing apoptosis. J Cell Biochem. 2018 Dec;119(12):9742–9751.
  • Sharifnia T, Wawer MJ, Chen T, et al. Small-molecule targeting of brachyury transcription factor addiction in chordoma. Nat Med. 2019 Feb;25(2):292–300.
  • Shi CS, Kuo KL, Chen MS, et al. Suppression of angiogenesis by targeting Cyclin-Dependent Kinase 7 in human umbilical vein endothelial cells and renal cell carcinoma: an in vitro and in vivo study. Cells. 2019 Nov 19;8(11):1469.
  • Miao J, Kyoyama H, Liu L, et al. Inhibition of cyclin-dependent kinase 7 down-regulates yes-associated protein expression in mesothelioma cells. J Cell Mol Med. 2020 Jan;24(1):1087–1098.
  • Duan J, He Y, Fu X, et al. CDK7 activated beta-catenin/TCF signaling in hepatocellular carcinoma. Exp Cell Res. 2018 Sep 15;370(2):461–467.
  • Jiang L, Huang R, Wu Y, et al. Overexpression of CDK7 is associated with unfavourable prognosis in oral squamous cell carcinoma. Pathology. 2019 Jan;51(1):74–80.
  • Zhong S, Zhang Y, Yin X, et al. CDK7 inhibitor suppresses tumor progression through blocking the cell cycle at the G2/M phase and inhibiting transcriptional activity in cervical cancer. Oncol Targets Ther. 2019;12:2137–2147.
  • Huang JR, Qin WM, Wang K, et al. Cyclin-dependent kinase 7 inhibitor THZ2 inhibits the growth of human gastric cancer in vitro and in vivo. Am J Transl Res. 2018;10(11):3664–3676.
  • Torre LA, Siegel RL, Ward EM, et al. Global cancer incidence and mortality rates and trends–An update. Cancer Epidemiol Biomarkers Prev. 2016 Jan;25(1):16–27.
  • Rasool RU, Natesan R, Deng Q, et al. CDK7 inhibition suppresses castration-resistant prostate cancer through MED1 inactivation. Cancer Discov. 2019 Nov;9(11):1538–1555.
  • Russo JW, Nouri M, Balk SP. Androgen receptor interaction with mediator complex is enhanced in castration-resistant prostate cancer by CDK7 phosphorylation of MED1. Cancer Discov. 2019 Nov;9(11):1490–1492.
  • Olson CM, Liang Y, Leggett A, et al. Development of a selective CDK7 covalent inhibitor reveals predominant cell-cycle phenotype. Cell Chem Biol. 2019 Jun 20;26(6):792–803 e10.
  • Zhang H, Christensen CL, Dries R, et al. CDK7 inhibition potentiates genome instability triggering anti-tumor immunity in small cell lung cancer. Cancer Cell. 2020 Jan 13;37(1):37.
  • Huang T, Ding X, Xu G, et al. CDK7 inhibitor THZ1 inhibits MCL1 synthesis and drives cholangiocarcinoma apoptosis in combination with BCL2/BCL-XL inhibitor ABT-263. Cell Death Discov. 2019 Aug 9;10(8):602.
  • Sun B, Mason S, Wilson RC, et al. Inhibition of the transcriptional kinase CDK7 overcomes therapeutic resistance in HER2-positive breast cancers. Oncogene. 2020 Jan;39(1):50–63.
  • McDermott MSJ, Sharko AC, Munie J, et al. CDK7 inhibition is effective in all the subtypes of breast cancer: determinants of response and synergy with EGFR inhibition. Cells. 2020 2020 Mar;9(3):638.
  • Tee AE, Ciampa OC, Wong M, et al. Combination therapy with the CDK7 inhibitor and the tyrosine kinase inhibitor exerts synergistic anticancer effects against MYCN‐amplified neuroblastoma. Int J Cancer. 2020 Feb 22;47(7):1928–1938.
  • Guo L, Li J, Zeng HX, et al. A combination strategy targeting enhancer plasticity exerts synergistic lethality against BETi-resistant leukemia cells. Nat Commun. 2020 Feb;11(1):16.
  • Cayrol F, Praditsuktavorn P, Fernando TM, et al. THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors. Nat Commun. 2017;8:11.
  • Chow P-M, Liu S-H, Chang Y-W, et al. The covalent CDK7 inhibitor THZ1 enhances temsirolimus-induced cytotoxicity via autophagy suppression in human renal cell carcinoma. Cancer Lett. 2020;471:27–37.
  • Zhang W, Ge H, Jiang Y, et al. Combinational therapeutic targeting of BRD4 and CDK7 synergistically induces anticancer effects in head and neck squamous cell carcinoma. Cancer Lett. 2020 Jan 28;469:510–523.
  • Durbin AD, Zimmerman MW, Dharia NV, et al. Selective gene dependencies in MYCN-amplified neuroblastoma include the core transcriptional regulatory circuitry. Nat Genet. 2018 Sep;50(9):1240.
  • Wong M, Sun YT, Xi ZC, et al. JMJD6 is a tumorigenic factor and therapeutic target in neuroblastoma. Nat Commun. 2019 Jul;10:15.
  • Cao X, Dang L, Zheng X, et al. Targeting super-enhancer-driven oncogenic transcription by CDK7 inhibition in anaplastic thyroid carcinoma. Thyroid. 2019 Jun;29(6):809–823.
  • Patel H, Periyasamy M, Sava GP, et al. ICEC0942, an orally bioavailable selective inhibitor of CDK7 for cancer treatment. Mol Cancer Ther. 2018 Jun;17(6):1156–1166.
  • De Azevedo WF, Leclerc S, Meijer L, et al. Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human CDK2 complexed with roscovitine. Eur J Biochem. 1997 Jan 15;243(1–2):518–526.
  • McClue SJ, Blake D, Clarke R, et al. In vitro and in vivo antitumor properties of the cyclin dependent kinase inhibitor CYC202 (R-roscovitine). Int J Cancer. 2002 Dec 10;102(5):463–468.
  • Whittaker SR, Walton MI, Garrett MD, et al. The cyclin-dependent kinase inhibitor CYC202 (R-Roscovitine) inhibits retinoblastoma protein phosphorylation, causes loss of cyclin D1, and activates the mitogen-activated protein kinase pathway. Cancer Res. 2004 Jan 1;64(1):262–272.
  • Cicenas J, Kalyan K, Sorokinas A, et al. Roscovitine in cancer and other diseases. Ann Transl Med. 2015 Jun;3(10):135.
  • Jorda R, Paruch K, Krystof V. Cyclin-dependent kinase inhibitors inspired by roscovitine: purine bioisosteres. Curr Pharm Des. 2012;18(20):2974–2980.
  • Meijer L, Bettayeb K, Galons H, et al. Perharidines as CDK inhibitors in the treatment of proliferative diseases. WO2009034411A1; 2009.
  • Tang L, Li MH, Cao P, et al. Crystal structure of pyridoxal kinase in complex with roscovitine and derivatives. J Biol Chem. 2005 Sep 2;280(35):31220–31229.
  • Paruch K, Dwyer MP, Alvarez C, et al. Discovery of dinaciclib (SCH 727965): A potent and selective inhibitor of cyclin-dependent kinases. ACS Med Chem Lett. 2010 Aug 12;1(5):204–208.
  • Baltus CB, Jorda R, Marot C, et al. Synthesis, biological evaluation and molecular modeling of a novel series of 7-azaindole based tri-heterocyclic compounds as potent CDK2/Cyclin E inhibitors. Eur J Med. 2016 Jan 27;108:701–719.
  • Premkumar DR, Jane EP, Thambireddy S, et al. Mitochondrial dysfunction RAD51, and Ku80 proteolysis promote apoptotic effects of Dinaciclib in Bcl-xL silenced cells. Mol Carcinog. 2018 Apr;57(4):469–482.
  • Popowycz F, Fournet G, Schneider C, et al. Pyrazolo[1,5-a]-1,3,5-triazine as a purine bioisostere: access to potent cyclin-dependent kinase inhibitor (R)-roscovitine analogue. J Med Chem. 2009 Feb 12;52(3):655–663.
  • Bettayeb K, Sallam H, Ferandin Y, et al. N-&-N, a new class of cell death-inducing kinase inhibitors derived from the purine roscovitine. Mol Cancer Ther. 2008 Sep;7(9):2713–2724.
  • Cho SJ, Kim YJ, Surh YJ, et al. Ibulocydine is a novel prodrug Cdk inhibitor that effectively induces apoptosis in hepatocellular carcinoma cells. J Biol Chem. 2011 Jun 3;286(22):19662–19671.
  • Kim Y-J, Kwon SH, Bae IH, et al., Selectivity between N-1 and N-7 nucleosides: regioselective synthesis of BMK-Y101, a potent cdk7 and 9 inhibitor. Tetrahedron Lett. 2013;54(40): 5484–5488. .
  • Park SS, Jwa E, Shin SH, et al. Ibulocydine sensitizes human hepatocellular carcinoma cells to TRAIL-induced apoptosis via calpain-mediated Bax cleavage. Int J Biochem Cell Biol. 2017 Feb;83:47–55.
  • Ali S, Heathcote DA, Kroll SH, et al. The development of a selective cyclin-dependent kinase inhibitor that shows antitumor activity. Cancer Res. 2009 Aug 1;69(15):6208–6215.
  • Jogalekar AS, Snyder JP, Liotta DC, et al. Pyrazolopyrimidinamine compounds as selective inhibitors for cyclin-dependent kinases and their preparation, pharmaceutical compositions and use in the treatment of CDK-mediated diseases. WO2008151304A1; 2008.
  • Wang BY, Liu QY, Cao J, et al. Selective CDK7 inhibition with BS-181 suppresses cell proliferation and induces cell cycle arrest and apoptosis in gastric cancer. Drug Des, Dev Ther. 2016;10:1181–1189.
  • Gong Y, Yang J, Liu F, et al. Cyclin-Dependent Kinase 7 is a potential therapeutic target in papillary thyroid carcinoma. J Biol Regul Homeost Agents. 2018 Nov-Dec;32(6):1361–1368.
  • Kelso TW, Baumgart K, Eickhoff J, et al. Cyclin-dependent kinase 7 controls mRNA synthesis by affecting stability of preinitiation complexes, leading to altered gene expression, cell cycle progression, and survival of tumor cells. Mol Cell Biol. 2014 Oct 1;34(19):3675–3688.
  • Eickhoff J, Zischinsky G, Koch U Preparation of pyrazolotriazine derivatives for use as selective cyclin-dependent kinase inhibitors. WO2013128028A1; 2013.
  • Hutterer C, Eickhoff J, Milbradt J, et al. A novel CDK7 inhibitor of the Pyrazolotriazine class exerts broad-spectrum antiviral activity at nanomolar concentrations. Antimicrob Agents Chemother. 2015 Apr;59(4):2062–2071.
  • Hazel P, Kroll SH, Bondke A, et al. Inhibitor selectivity for cyclin-dependent kinase 7: A structural, thermodynamic, and modelling study. Chemmedchem. 2017 Mar 7;12(5):372–380.
  • Clark K, Ainscow E, Peall A, et al. CT7001, a novel orally bio-available CDK7 inhibitor, is highly active in in-Vitro and in-Vivo models of AML. Blood. 2017;130(Suppl 1): 2645-2645.
  • Bahl A, Einscow E, Leishman A, et al. Activity of CT7001 an orally bio-available cyclin-dependent kinase 7 selective inhibitor in models of triple negative breast cancer. Cancer Res. 2018;78(Suppl_4):P1-09-04.
  • Ainscow EK, Leishman A, Sullivan E, et al. CT7001: an orally bioavailable CDK7 inhibitor is a potential therapy for breast, small-cell lung and haematological cancers. Cancer Res. 2018 Jul;78(13):2.
  • Chu XJ, DePinto W, Bartkovitz D, et al. Discovery of [4-Amino-2-(1-methanesulfonylpiperidin-4-ylamino)pyrimidin-5-yl](2,3-difluoro-6- methoxyphenyl)methanone (R547), a potent and selective cyclin-dependent kinase inhibitor with significant in vivo antitumor activity. J Med Chem. 2006 Nov 2;49(22):6549–6560.
  • Siemeister G, Lucking U, Wengner AM, et al. BAY 1000394, a novel cyclin-dependent kinase inhibitor, with potent antitumor activity in mono- and in combination treatment upon oral application. Mol Cancer Ther. 2012 Oct;11(10):2265–2273.
  • Lucking U, Jautelat R, Kruger M, et al. The lab oddity prevails: discovery of pan-CDK inhibitor (R) -S-cyclopropyl-S- (4-{[4-{[(1R,2R)-2-hydroxy-1-methylpropyl]oxy} −5-(trifluorome thyl) pyrimidin-2-yl] amino}phenyl) sulfoximide (BAY 1000394) for the treatment of cancer. Chemmedchem. 2013 Jul;8(7):1067–1085.
  • Misra RN, Xiao HY, Kim KS, et al. N-(cycloalkylamino)acyl-2-aminothiazole inhibitors of cyclin-dependent kinase 2. N-[5-[[[5-(1,1-dimethylethyl)-2-oxazolyl]methyl]thio]-2-thiazolyl]-4- piperidinecarboxamide (BMS-387032), a highly efficacious and selective antitumor agent. J Med Chem. 2004 Mar 25;47(7):1719–1728.
  • Zhang J, Liu S, Ye Q, et al. Transcriptional inhibition by CDK7/9 inhibitor SNS-032 abrogates oncogene addiction and reduces liver metastasis in uveal melanoma. Mol Cancer. 2019 Sep 16;18(1):140.
  • Degorce SL, Boyd S, Curwen JO, et al. Discovery of a potent, selective, orally bioavailable, and efficacious novel 2-(Pyrazol-4-ylamino)-pyrimidine inhibitor of the insulin-like growth factor-1 receptor (IGF-1R). J Med Chem. 2016 May 26;59(10):4859–4866.
  • Wang S, Meades C, Wood G, et al. 2-Anilino-4-(thiazol-5-yl)pyrimidine CDK inhibitors: synthesis, SAR analysis, X-ray crystallography, and biological activity. J Med Chem. 2004 Mar 25;47(7):1662–1675.
  • Wang S, Griffiths G, Midgley CA, et al. Discovery and characterization of 2-anilino-4- (thiazol-5-yl)pyrimidine transcriptional CDK inhibitors as anticancer agents. Chem Biol. 2010 Oct 29;17(10):1111–1121.
  • Chohan TA, Qian HY, Pan YL, et al. Molecular simulation studies on the binding selectivity of 2-anilino-4-(thiazol-5-yl)-pyrimidines in complexes with CDK2 and CDK7. Mol Biosyst. 2016 Jan;12(1):145–161.
  • Goh KC, Novotny-Diermayr V, Hart S, et al. TG02, a novel oral multi-kinase inhibitor of CDKs, JAK2 and FLT3 with potent anti-leukemic properties. Leukemia. 2012 Feb;26(2):236–243.
  • Alvarez-Fernandez S, Ortiz-Ruiz MJ, Parrott T, et al. Potent antimyeloma activity of a novel ERK5/CDK inhibitor. Clin Cancer Res. 2013 May 15;19(10):2677–2687.
  • William AD, Lee AC, Goh KC, et al. Discovery of kinase spectrum selective macrocycle (16E)-14-methyl-20-oxa-5,7,14,26-tetraazatetracyclo [19.3.1.1(2,6).1(8,12)] heptaco sa-1(25), 2 (26),3, 5, 8 (27),9, 11, 16, 21, 23-decaene (SB1317/TG02), a potent inhibitor of cyclin dependent kinases (CDKs), Janus kinase 2 (JAK2), and fms-like tyrosine kinase-3 (FLT3) for the treatment of cancer. J Med Chem. 2012 Jan 12;55(1):169–196.
  • Minzel W, Venkatachalam A, Fink A, et al. Small molecules co-targeting CKIalpha and the transcriptional kinases CDK7/9 control AML in preclinical models. Cell. 2018 Sep 20;175(1):171–185 e25.
  • Ball B, Abdel-Wahab O. Activating p53 and inhibiting superenhancers to cure leukemia. Trends Pharmacol Sci. 2018 Dec;39(12):1002–1004.
  • Ebert BL, Kronke J. Inhibition of casein kinase 1 alpha in acute myeloid leukemia. N Engl J Med. 2018 Nov 8;379(19):1873–1874.
  • Gray N, Zhang T, Kwiatkowski NP Preparation of substituted pyrimidinamines or pyridinamines as inhibitors of cyclin-dependent kinase 7 (CDK7). WO2014063068A1; 2014.
  • Greber BJ, Perez-Bertoldi JM, Lim K, et al. The cryoelectron microscopy structure of the human CDK-activating kinase. Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):22849–22857.
  • Zhang T, Kwiatkowski N, Olson CM, et al. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nat Chem Biol. 2016 Oct;12(10):876–884.
  • Zhang Y, Zhou L, Bandyopadhyay D, et al. The covalent CDK7 inhibitor THZ1 potently induces apoptosis in multiple myeloma cells in vitro and in vivo. Clin Cancer Res. 2019 Oct 15;25(20):6195–6205.
  • Ke N, Johannessen L, Rajagopal N, et al. Prospective identification of RB pathway alterations predict response to SY-1365, a selective CDK7 inhibitor, in a panel of high-grade serous ovarian cancer (HGSOC) patient derived xenograft (PDX) models. Cancer Res. 2019 Jul;79(Suppl_13):4409.
  • Konstantinopoulos PA, Hodgson G, Rajagopal N, et al. SY-1365, a selective CDK7 inhibitor, exhibits potent antitumor activity against ovarian cancer models in vitro and in vivo. Cancer Res. 2018 Jul;78(Suppl_13):1151.
  • Hodgson G, Johannessen L, Rajagopal N, et al. -1365, a potent and selective CDK7 inhibitor, exhibits anti-tumor activity in preclinical models of hematologic malignancies, and demonstrates interactions with the BCL-XL/BCL2 mitochondrial apoptosis signaling pathway in leukemia. Blood. 2017 Dec 7;130(Suppl_1):2651.
  • Guarducci C, Nardone A, Feiglin A, et al. Inhibition of CDK7 overcomes resistance to CDK4/6 inhibitors in hormone receptor positive breast cancer cells. Cancer Res. 2019 Feb;79(Suppl_4):PD7–12.
  • Juric D, Papadopoulos KP, Tolcher A, et al. Proof-of-mechanism based on target engagement and modulation of gene expression following treatment with SY-1365, a first-in-class selective CDK7 inhibitor in Phase 1 patients with advanced cancer. Eur J Cancer. 2018;103:E19–E19.
  • Syros announces update on selective CDK7 inhibitor portfolio; 2019;10-17. Available from: https://ir.syros.com/press-releases/detail/170/syros-announces-update-on-selective-cdk7-inhibitor-portfolio,
  • Hu S, Marineau J, Hamman K, et al. -5609, an orally available selective CDK7 inhibitor demonstrates broad anti-tumor activity in vivo. Cancer Res. 2019;79(Suppl_13):4421.
  • Johannessen LH, Hu S, Ke N, et al. Preclinical evaluation of PK, PD, and antitumor activity of the oral, non-covalent, potent and highly selective CDK7 inhibitor, SY-5609, provides rationale for clinical development in multiple solid tumor indications. Mol Cancer Ther. 2019;18(12 Supplement):C091.
  • Johannessen L, Ke N, Sawant P, et al. Activity of SY-5609, an oral, noncovalent, potent, and selective CDK7 inhibitor, in preclinical models of colorectal cancer. J Clin Oncol. 2020 May 20;38(Suppl_15): 3585-3585.
  • Papadopoulos KP, Sharma M, Hamilton EP, et al. First-in-human phase I study of SY-5609, an oral, potent, and selective noncovalent CDK7 inhibitor, in adult patients with select advanced solid tumors. J Clin Oncol. 2020 May 20;38(Suppl_15):TPS3662–TPS3662.
  • Brasca MG, Albanese C, Alzani R, et al. Optimization of 6,6-dimethyl pyrrolo[3,4-c]pyrazoles: identification of PHA-793887, a potent CDK inhibitor suitable for intravenous dosing. Bioorg Med Chem. 2010 Mar 1;18(5):1844–1853.
  • Massard C, Soria JC, Anthoney DA, et al. A first in man, phase I dose-escalation study of PHA-793887, an inhibitor of multiple cyclin-dependent kinases (CDK2, 1 and 4) reveals unexpected hepatotoxicity in patients with solid tumors. Cell Cycle. 2011 Mar 15;10(6):963–970.
  • Murray BW, Guo C, Piraino J, et al. Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proc Natl Acad Sci U S A. 2010 May 18;107(20):9446–9451.
  • Rudolph J, Crawford JJ, Hoeflich KP, et al. Inhibitors of p21-activated kinases (PAKs). J Med Chem. 2015 Jan 8;58(1):111–129.
  • Kalan S, Amat R, Schachter MM, et al. Activation of the p53 transcriptional program sensitizes cancer cells to CDK7 inhibitors. Cell Rep. 2017 Oct 10;21(2):467–481.
  • Gray NS, Liang Y, Zhang T, et al. Preparation of pyrrolo[3,4-c]pyrazole-5-carboxamides as inhibitors of cyclin-dependent kinase 7 (CDK7). WO2016105528A2; 2016.
  • Jones LH. Precision retargeting: A selective covalent inhibitor illuminates CDK7 biology. Cell Chem Biol. 2019 Jun 20;26(6):779–780.
  • Arrington KL, Fraley ME, Hanney B, et al. Preparation of substituted 2-(indazolyl)indoles as tyrosine kinase inhibitors. WO2003024969A1; 2003.
  • Fraley ME, Steen JT, Brnardic EJ, et al. 3-(Indol-2-yl)indazoles as Chek1 kinase inhibitors: optimization of potency and selectivity via substitution at C6. Bioorg Med Chem Lett. 2006 Dec 1;16(23):6049–6053.
  • Caridha D, Kathcart AK, Jirage D, et al. Activity of substituted thiophene sulfonamides against malarial and mammalian cyclin dependent protein kinases. Bioorg Med Chem Lett. 2010 Jul 1;20(13):3863–3867.
  • Woodard CL, Keenan SM, Gerena L, et al. Evaluation of broad spectrum protein kinase inhibitors to probe the architecture of the malarial cyclin dependent protein kinase Pfmrk. Bioorg Med Chem Lett. 2007 Sep 1;17(17):4961–4966.
  • Browne CM, Jiang B, Ficarro SB, et al. A chemoproteomic strategy for direct and proteome-wide covalent inhibitor target-site identification. J Am Chem Soc. 2019 Jan 09;141(1):191–203.
  • Minatohara K, Akiyoshi M, Okuno H. Role of immediate-early genes in synaptic plasticity and neuronal ensembles underlying the memory trace. Front Mol Neurosci. 2015;8:78.
  • Lopez-Mejia IC, Castillo-Armengol J, Lagarrigue S, et al. Role of cell cycle regulators in adipose tissue and whole body energy homeostasis. Cell Mol Life Sci. 2018 Mar;75(6):975–987.
  • Inagaki T, Dutchak P, Zhao G, et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007 Jun;5(6):415–425.
  • Zhou Y, Lu L, Jiang G, et al. Targeting CDK7 increases the stability of Snail to promote the dissemination of colorectal cancer. Cell Death Differ. 2019 Aug;26(8):1442–1452.
  • Robey RW, Pluchino KM, Hall MD, et al. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer. 2018;18(7):452–464.
  • Mansoori B, Mohammadi A, Davudian S, et al. The different mechanisms of cancer drug resistance: A brief review. Adv Pharm Bull. 2017;7(3):339–348.
  • Gao Y, Zhang T, Terai H, et al. Overcoming resistance to the THZ series of covalent transcriptional CDK inhibitors. Cell Chem Biol. 2018 Feb 15;25(2):135–142 e5.
  • Sava GP, Fan H, Fisher RA, et al. ABC-transporter upregulation mediates resistance to the CDK7 inhibitors THZ1 and ICEC0942. Oncogene. 2020 Jan;39(3):651–663.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.