462
Views
6
CrossRef citations to date
0
Altmetric
Review

Immune checkpoint inhibitors for the treatment of myeloma: novel investigational options

, &
Pages 965-973 | Received 31 Mar 2021, Accepted 09 Jul 2021, Published online: 19 Jul 2021

References

  • Palumbo A, Chanan-Khan A, Weisel K, et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375(8):754–766.
  • Moreau P, Attal M, Hulin C, et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, phase 3 study. Lancet Lond Engl. 2019;394(10192):29–38.
  • Dimopoulos MA, Oriol A, Nahi H, et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375(14):1319–1331.
  • Facon T, Kumar S, Plesner T, et al. Daratumumab plus lenalidomide and dexamethasone for untreated myeloma. N Engl J Med. 2019;380(22):2104–2115.
  • Gandhi UH, Cornell RF, Lakshman A, et al. Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy. Leukemia. 2019;33(9):2266–2275.
  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–264.
  • Shankaran V, Ikeda H, Bruce AT, et al. IFNg and lymphocytes prevent primary tumour development and shape tumour immunogenicity. 2001;410:5
  • Walunas TL, Lenschow DJ, Bakker CY, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1(5):405–413.
  • Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the pd-1 gene encoding an itim motif-carrying immunoreceptor. Immunity. 1999;11(2):141–151.
  • Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995;182(2):459–465.
  • Qureshi OS, Zheng Y, Nakamura K, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332(6029):600–603.
  • Francisco LM, Salinas VH, Brown KE, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med. 2009;206(13):3015–3029.
  • *Benson DM Jr, Bakan CE, Mishra A, et al., The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti–PD-1 antibody. Blood. 116(13): 2286–2294. 2010.
  • *Kwon M, Kim CG, Lee H, et al., PD-1 Blockade reinvigorates bone marrow CD8 + t cells from patients with multiple myeloma in the presence of TGFΒ inhibitors. Clin Cancer Res Off J Am Assoc Cancer Res. 26(7): 1644–1655. 2020.
  • Rosenblatt J, Glotzbecker B, Mills H, et al. PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine. J Immunother. 2011;34(5):409–418.
  • Liu J, Hamrouni A, Wolowiec D, et al. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-γ and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood. 2007;110(1):296–304.
  • *Tamura H, Ishibashi M, Yamashita T, et al., Marrow stromal cells induce B7-H1 expression on myeloma cells, generating aggressive characteristics in multiple myeloma. Leukemia. 27(2): 464–472. 2013.
  • *Wang L, Wang H, Chen H, et al., Serum levels of soluble programmed death ligand 1 predict treatment response and progression free survival in multiple myeloma. Oncotarget. 6(38): 41228–41236. 2015.
  • Hallett WHD, Jing W, Drobyski WR, et al. Immunosuppressive effects of multiple myeloma are overcome by PD-L1 blockade. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2011;17(8):1133–1145.
  • Görgün G, Samur MK, Cowens KB, et al. Lenalidomide enhances immune checkpoint blockade-induced immune response in multiple myeloma. Clin Cancer Res. 2015;21(20):4607–4618.
  • *Ribrag V, Avigan DE, Green DJ, et al., Phase 1b trial of pembrolizumab monotherapy for relapsed/refractory multiple myeloma: KEYNOTE-013. Br J Haematol. 186(3): e41–e44. 2019.
  • Lesokhin AM, Ansell SM, Armand P, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase ib study. J Clin Oncol. 2016;34(23):2698–2704.
  • Dhodapkar MV, Sexton R, Das R, et al. Prospective analysis of antigen-specific immunity, stem-cell antigens, and immune checkpoints in monoclonal gammopathy. Blood. 2015;126(22):2475–2478.
  • Manasanch EE, Han G, Mathur R, et al. A pilot study of pembrolizumab in smoldering myeloma: report of the clinical, immune, and genomic analysis. Blood Adv. 2019;3(15):2400–2408.
  • Chung DJ, Pronschinske KB, Shyer JA, et al. T-cell exhaustion in multiple myeloma relapse after autotransplant: optimal timing of immunotherapy. Cancer Immunol Res. 2016;4(1):61–71.
  • D’Souza A, Hari P, Pasquini M, et al. A phase 2 study of pembrolizumab during lymphodepletion after autologous hematopoietic cell transplantation for multiple myeloma. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2019;25(8):1492–1497.
  • Giuliani M, Janji B, Berchem G. Activation of NK cells and disruption of PD-L1/PD-1 axis: two different ways for lenalidomide to block myeloma progression. Oncotarget. 2017;8(14):24031–24044.
  • Mateos M-V, Orlowski RZ, Ocio EM, et al. Pembrolizumab combined with lenalidomide and low-dose dexamethasone for relapsed or refractory multiple myeloma: phase I KEYNOTE −023 study. Br J Haematol. 2019;186(5):e117–e121.
  • Badros A, Hyjek E, Ma N, et al. Pembrolizumab, pomalidomide, and low-dose dexamethasone for relapsed/refractory multiple myeloma. Blood. 2017;130(10):1189–1197.
  • **Mateos M-V, Blacklock H, Schjesvold F, et al., Pembrolizumab plus pomalidomide and dexamethasone for patients with relapsed or refractory multiple myeloma (KEYNOTE-183): a randomised, open-label, phase 3 trial. Lancet Haematol. 6(9): e459–e469. 2019.
  • **Usmani SZ, Schjesvold F, Oriol A, et al., Pembrolizumab plus lenalidomide and dexamethasone for patients with treatment-naive multiple myeloma (KEYNOTE-185): a randomised, open-label, phase 3 trial. Lancet Haematol. 6(9): e448–e458. 2019.
  • Lesokhin AM, Bal S, Badros AZ. Lessons Learned from Checkpoint Blockade Targeting PD-1 in Multiple Myeloma. Cancer Immunol Res. 2019;7(8):1224–1229.
  • Research C for DE and. FDA alerts healthcare professionals and oncology clinical investigators about two clinical trials on hold evaluating keytruda® (pembrolizumab) in patients with multiple myeloma. FDA [Internet]; 2019 [cited 2021 Jan 3]. Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-alerts-healthcare-professionals-and-oncology-clinical-investigators-about-two-clinical-trials.
  • Moreau P, Ghori R, Farooqui M, et al. Pembrolizumab combined with carfilzomib and low-dose dexamethasone for relapsed or refractory multiple myeloma: cohort 2 of the phase I KEYNOTE-023 study. BJH. In press.
  • Dimopoulos MA, Dytfeld D, Grosicki S, et al. Elotuzumab plus pomalidomide and dexamethasone for multiple myeloma. N Engl J Med. 2018;379(19):1811–1822.
  • Mateos M-V, Cavo M, Blade J, et al. Overall survival with daratumumab, bortezomib, melphalan, and prednisone in newly diagnosed multiple myeloma (ALCYONE): a randomised, open-label, phase 3 trial. Lancet Lond Engl. 2020;395(10218):132–141.
  • Krejcik J, Casneuf T, Nijhof IS, et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood. 2016;128(3):384–394.
  • Adams HC, Stevenaert F, Krejcik J, et al. High-parameter mass cytometry evaluation of relapsed/refractory multiple myeloma patients treated with daratumumab demonstrates immune modulation as a novel mechanism of action. Cytometry Part A. 2019;95(3):279–289.
  • *Verkleij CPM, Jhatakia A, Broekmans MEC, et al., Preclinical rationale for targeting the PD-1/PD-L1 axis in combination with a CD38 antibody in multiple myeloma and other CD38-positive malignancies. Cancers (Basel). 12(12): 3713. 2020.
  • *Verkleij CPM, Minnema MC, De Weerdt O, et al., Efficacy and safety of nivolumab combined with daratumumab with or without low-dose cyclophosphamide in relapsed/refractory multiple myeloma; interim analysis of the phase 2 nivo-dara study. Blood. 134(Supplement_1): 1879. 2019.
  • Cohen YC, Oriol A, Wu KL, et al. Daratumumab with cetrelimab, an anti–PD-1 monoclonal antibody, in relapsed/refractory multiple myeloma. Clin Lymphoma Myeloma Leuk. 2020. Available from: http://www.sciencedirect.com/science/article/pii/S2152265020304237.
  • Frerichs KA, Verkleij CPM, Dimopoulos MA, et al. Efficacy and safety of durvalumab combined with daratumumab in daratumumab-refractory multiple myeloma patients. Cancers (Basel). 2021;13(10):13.
  • Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer [internet]. httpdxdoiorgpasserelleuniv-rennes1fr101056NEJMoa1200690. Massachusetts Medical Society; 2012 [cited 2021 Jan 30]. Available from: https://www-nejm-org.passerelle.univ-rennes1.fr/doi/10.1056/NEJMoa1200690.
  • Naidoo J, Page DB, Li BT, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015;26(12):2375–2391.
  • Postow MA. Managing immune checkpoint-blocking antibody side effects. Am Soc Clin Oncol Educ Book Am Soc Clin Oncol Annu Meet. 2015;35:76–83. DOI:https://doi.org/10.14694/EdBook_AM.2015.35.76
  • Reddy HG, Schneider BJ, Tai AW. Immune checkpoint inhibitor-associated colitis and hepatitis. Clin Transl Gastroenterol. 2018;9(9):180.
  • Barroso-Sousa R, Barry WT, Garrido-Castro AC, et al. Incidence of Endocrine Dysfunction Following the Use of Different Immune Checkpoint Inhibitor Regimens: A Systematic Review and Meta-analysis. JAMA Oncol. 2018;4: 173
  • Nishino M, Sholl LM, Hatabu H, et al. Anti–PD-1–related pneumonitis during cancer immunotherapy [Internet]. Httpsdoi-Orgpasserelleuniv-Rennes1fr101056NEJMc1505197. Massachusetts Medical Society; 2015 [cited 2021 Jan 30]. Available from: https://www-nejm-org.passerelle.univ-rennes1.fr/doi/10.1056/NEJMc1505197.
  • Haanen JBAG, Carbonnel F, Robert C, et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28:iv119–iv142.
  • Gormley NJ, Pazdur R. Immunotherapy combinations in multiple myeloma — known Unknowns. N Engl J Med. 2018;379(19):1791–1795.
  • Tang C, Wang X, Soh H, et al. Combining radiation and immunotherapy: a new systemic therapy for solid tumors? Cancer Immunol Res. 2014;2(9):831–838.
  • Ngiow SF, McArthur GA, Smyth MJ. Radiotherapy complements immune checkpoint blockade. Cancer Cell. 2015;27(4):437–438.
  • Twyman-Saint Victor C, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520(7547):373–377.
  • Kearl TJ, Jing W, Gershan JA, et al. Programmed death receptor-1/programmed death receptor ligand-1 blockade after transient lymphodepletion to treat myeloma. J Immunol. 2013;190(11):5620–5628.
  • Guillerey C, Harjunpää H, Carrié N, et al. TIGIT immune checkpoint blockade restores CD8+ T-cell immunity against multiple myeloma. Blood. 2018;132(16):1689–1694.
  • Asimakopoulos F. TIGIT checkpoint inhibition for myeloma. Blood. 2018;132(16):1629–1630.
  • Lucas F, Pennell M, Huang Y, et al. T cell transcriptional profiling and immunophenotyping uncover LAG3 as a potential significant target of immune modulation in multiple myeloma. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2020;26(1):7–15.
  • Liu Z, Xiang C, Han M, et al. Study on Tim3 regulation of multiple myeloma cell proliferation via NF-κB signal pathways. Front Oncol. 2020;10:584530.
  • Vuckovic S, Minnie SA, Smith D, et al. Bone marrow transplantation generates T cell–dependent control of myeloma in mice. J Clin Invest. 2019;129(1):106–121.
  • Uchida A, Yagita M, Sugiyama H, et al. Strong natural killer (NK) cell activity in bone marrow of myeloma patients: accelerated maturation of bone marrow NK cells and their interaction with other bone marrow cells. Int J Cancer. 1984;34(3):375–381.
  • Benson DM, Caligiuri MA. Killer immunoglobulin-like receptors and tumor immunity. Cancer Immunol Res. 2014;2(2):99–104.
  • Benson DM Jr, Hofmeister CC, Padmanabhan S, et al. A phase 1 trial of the anti-KIR antibody IPH2101 in patients with relapsed/refractory multiple myeloma. Blood. 2012;120(22):4324–4333.
  • Nijhof IS, van Bueren JJL, van Kessel B. Daratumumab-mediated lysis of primary multiple myeloma cells is enhanced in combination with the human anti-KIR antibody IPH2102 and lenalidomide. Haematologica. 2015;100(2):263–268.
  • Kluger HM, Zito CR, Barr ML, et al. Characterization of PD-L1 expression and associated T-cell infiltrates in metastatic melanoma samples from variable anatomic sites. Clin Cancer Res Off J Am Assoc Cancer Res. 2015;21(13):3052–3060.
  • Kartolo A, Holstead R, Khalid S, et al. Serum neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in prognosticating immunotherapy efficacy. Immunotherapy. 2020;12(11):785–798.
  • Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma [Internet]. Httpsdoi-Orgpasserelleuniv-Rennes1fr101056nejmoa1504030. Massachusetts Medical Society; 2015 [cited 2021 Mar 2]. Available from: https://www-nejm-org.passerelle.univ-rennes1.fr/doi/10.1056/NEJMoa1504030.
  • Raje N, Berdeja J, Lin Y, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 2019;380(18):1726–1737.
  • Munshi NC, Anderson LD, Shah N, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med. 2021;384(8):705–716.
  • Nakajima M, Sakoda Y, Adachi K, et al. Improved survival of chimeric antigen receptor-engineered T (CAR-T) and tumor-specific T cells caused by anti-programmed cell death protein 1 single-chain variable fragment-producing CAR -T cells. Cancer Sci. 2019;110(10):3079–3088.
  • John LB, Devaud C, Duong CPM, et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19(20):5636–5646.
  • Li AM, Hucks GE, Dinofia AM, et al. Checkpoint inhibitors augment CD19-directed chimeric antigen receptor (CAR) T cell therapy in relapsed B-cell acute lymphoblastic leukemia. Blood. 2018;132(Supplement 1):556.
  • Liu H, Lei W, Zhang C, et al. CD19-specific CAR T cells that express a PD-1/CD28 chimeric switch-receptor are effective in patients with PD-L1-positive B-cell lymphoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2021;27(2):473–484.
  • Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–330.
  • Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–319.
  • Dimopoulos MA, Moreau P, Terpos E, et al. Multiple myeloma: EHA-ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2021;32(3):309–322.
  • Moreau P, Kumar SK, San Miguel J, et al. Treatment of relapsed and refractory multiple myeloma: recommendations from the international myeloma working group. Lancet Oncol. 2021;22(3):e105–e118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.