583
Views
9
CrossRef citations to date
0
Altmetric
Drug Evaluation

Sprifermin: a recombinant human fibroblast growth factor 18 for the treatment of knee osteoarthritis

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 923-930 | Received 20 Apr 2021, Accepted 23 Aug 2021, Published online: 03 Sep 2021

References

  • Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019;393(10182):1745–1759.
  • Sharma L. Osteoarthritis of the Knee. N Engl J Med. 2021;384:51–59.
  • Li J, Zhu Z, Li Y, et al. Qualitative and quantitative measures of prefemoral and quadriceps fat pads are associated with incident radiographic osteoarthritis: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2020;28(4):453–461.
  • Zhu Z, Li J, Ruan G, et al. Investigational drugs for the treatment of osteoarthritis, an update on recent developments. Expert Opin Investig Drugs. 2018;27(11):881–900.
  • Hermann W, Lambova S, Muller-Ladner U, et al. Current Treatment Options for Osteoarthritis. Curr Rheumatol Rev. 2018;14(2):108–116.
  • Armiento AR, Stoddart MJ, Alini M, et al. Biomaterials for articular cartilage tissue engineering: learning from biology. Acta Biomater. 2018;65:1–20.
  • Correa D, Lietman SA. Articular cartilage repair: current needs, methods and research directions. Semin Cell Dev Biol. 2017;62:67–77.
  • Sprifermin - Merck. Adis Insight. Switzerland AG: Springer Nature.
  • Bannuru RR, Osani MC, Vaysbrot EE, et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis Cartilage. 2019;27:1578–1589.
  • Kolasinski SL, Neogi T, Hochberg MC, et al. American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis Care Res (Hoboken). 2019;2020(72):149–162.
  • Bruyère O, Altman RD, Reginster JY, et al. Efficacy and safety of glucosamine sulfate in the management of osteoarthritis: evidence from real-life setting trials and surveys. Semin Arthritis Rheum. 2016;45:S12–17.
  • Cai X, Yuan S, Zeng Y, et al. New Trends in Pharmacological Treatments for Osteoarthritis. Front Pharmacol. 2021;12:645842.
  • Latourte A, Kloppenburg M, Richette P, et al. Emerging pharmaceutical therapies for osteoarthritis. Nat Rev Rheumatol. 2020;16:673–688.
  • Ohbayashi N, Hoshikawa M, Kimura S, et al. Structure and expression of the mRNA encoding a novel fibroblast growth factor, FGF-18. J Biol Chem. 1998;273(29): 18161–18164.
  • Whitmore TE, Maurer MF, Sexson S, et al. Assignment of fibroblast growth factor 18 (FGF18) to human chromosome 5q34 by use of radiation hybrid mapping and fluorescence in situ hybridization. Cytogenet Cell Genet. 2000;90:231–233.
  • Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol. 2001;2(3):3005. Reviews.
  • Katoh M, Katoh M. Comparative genomics on FGF8, FGF17, and FGF18 orthologs. Int J Mol Med. 2005;16:493–496.
  • Greco V, Chen T, Rendl M, et al. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell. 2009;4(2):155–169.
  • Hasegawa H, Ashigaki S, Takamatsu M, et al. Laminar patterning in the developing neocortex by temporally coordinated fibroblast growth factor signaling. J Neurosci. 2004;24:8711–8719.
  • Ishibe T, Nakayama T, Okamoto T, et al. Disruption of fibroblast growth factor signal pathway inhibits the growth of synovial sarcomas: potential application of signal inhibitors to molecular target therapy. Clin Cancer Res. 2005;11(7):2702–2712.
  • Long F, Ornitz DM. Development of the endochondral skeleton. Cold Spring Harb Perspect Biol. 2013;5(1):a008334.
  • Song L, Huang Z, Chen Y, et al. High-efficiency production of bioactive recombinant human fibroblast growth factor 18 in Escherichia coli and its effects on hair follicle growth. Appl Microbiol Biotechnol. 2014;98(2):695–704.
  • Dong X, Tang B, Li J, et al. Expression and purification of intact and functional soybean (Glycine max) seed ferritin complex in Escherichia coli. J Microbiol Biotechnol. 2008;18:299–307.
  • Park SY, Binkley RM, Kim WJ, et al. Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity. Metab Eng. 2018;49:105–115.
  • Gigout A, Guehring H, Froemel D, et al. Sprifermin (rhFGF18) enables proliferation of chondrocytes producing a hyaline cartilage matrix. Osteoarthritis Cartilage. 2017;25(11):1858–1867.
  • Mori Y, Saito T, Chang SH, et al. Identification of fibroblast growth factor-18 as a molecule to protect adult articular cartilage by gene expression profiling. J Biol Chem. 2014;289(14):10192–10200.
  • Xie Y, Zinkle A, Chen L, et al. Fibroblast growth factor signalling in osteoarthritis and cartilage repair. Nat Rev Rheumatol. 2020;16(10):547–564.
  • Ellman MB, Yan D, Ahmadinia K, et al. Fibroblast growth factor control of cartilage homeostasis. J Cell Biochem. 2013;114(4):735–742.
  • Yan D, Chen D, Cool SM, et al. Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth factor 2-induced catabolic activities in human articular chondrocytes. Arthritis Res Ther. 2011;13(4):R130.
  • Wang XB, Zhao FC, Yi LH, et al. MicroRNA-21-5p as a novel therapeutic target for osteoarthritis. Rheumatology (Oxford). 2019. DOI:https://doi.org/10.1093/rheumatology/kez102.
  • Makower AM, Wroblewski J, Pawlowski A, et al. Effects of IGF-I, rGH, FGF, EGF and NCS on DNA-synthesis, cell proliferation and morphology of chondrocytes isolated from rat rib growth cartilage. Cell Biol Int Rep. 1989;13(3):259–270.
  • Sieber S, Gigout A. Sprifermin (recombinant human FGF18) is internalized through clathrin- and dynamin-independent pathways and degraded in primary chondrocytes. Exp Cell Res. 2020;395(2):112236.
  • Behr B, Sorkin M, Manu A, et al. Fgf-18 Is Required for Osteogenesis But Not Angiogenesis During Long Bone Repair. Tissue Eng Part A. 2011;17(15–16):2061–2069.
  • Ellsworth JL, Berry J, Bukowski T, et al. Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors. Osteoarthritis Cartilage. 2002;10(4):308–320.
  • Moore EE, Bendele AM, Thompson DL, et al. Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthritis Cartilage. 2005;13(7): 623–631.
  • Reker D, Kjelgaard-Petersen CF, Siebuhr AS, et al. Sprifermin (rhFGF18) modulates extracellular matrix turnover in cartilage explants ex vivo. J Transl Med. 2017;15(1):250.
  • Meloni GR, Farran A, Mohanraj B, et al. Recombinant human FGF18 preserves depth-dependent mechanical inhomogeneity in articular cartilage. Eur Cell Mater. 2019;38:23–34.
  • Sennett ML, Meloni GR, Farran AJE, et al. Sprifermin treatment enhances cartilage integration in an in vitro repair model. J Orthop Res. 2018;36:2648–2656.
  • Hendesi H, Stewart S, Gibison ML, et al. Recombinant fibroblast growth factor-18 (sprifermin) enhances microfracture-induced cartilage healing. J Orthop Res. 2021. DOI:https://doi.org/10.1002/jor.25063.
  • Dahlberg LE, Aydemir A, Muurahainen N, et al. A first-in-human, double-blind, randomised, placebo-controlled, dose ascending study of intra-articular rhFGF18 (sprifermin) in patients with advanced knee osteoarthritis. Clin Exp Rheumatol. 2016;34:445–450.
  • Lohmander LS, Hellot S, Dreher D, et al. Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: a randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 2014;66:1820–1831.
  • Eckstein F, Wirth W, Guermazi A, et al. Brief report: intraarticular sprifermin not only increases cartilage thickness, but also reduces cartilage loss: location-independent post hoc analysis using magnetic resonance imaging. Arthritis Rheumatol. 2015;67(11):2916–2922.
  • Brett A, Bowes MA, Conaghan PG, et al. Automated MRI assessment confirms cartilage thickness modification in patients with knee osteoarthritis: post-hoc analysis from a phase II sprifermin study. Osteoarthritis Cartilage. 2020;28(11):1432–1436.
  • Hochberg MC, Guermazi A, Guehring H, et al. Effect of Intra-Articular Sprifermin vs Placebo on Femorotibial Joint Cartilage Thickness in Patients With Osteoarthritis: the FORWARD Randomized Clinical Trial. Jama. 2019;322(14): 1360–1370.
  • Eckstein F, Kraines JL, Aydemir A, et al. Intra-articular sprifermin reduces cartilage loss in addition to increasing cartilage gain independent of location in the femorotibial joint: post-hoc analysis of a randomised, placebo-controlled phase II clinical trial. Ann Rheum Dis. 2020;79(4):525–528.
  • Roemer FW, Kraines J, Aydemir A, et al. Evaluating the structural effects of intra-articular sprifermin on cartilage and non-cartilaginous tissue alterations, based on sqMRI assessment over 2 years. Osteoarthritis Cartilage. 2020;28(9):1229–1234.
  • Guehring H, Kraines J, Moreau F, et al. Cartilage Thickness Modification with Sprifermin in Knee Osteoarthritis Patients Translates into Symptomatic Improvement over Placebo in Patients at Risk of Further Structural and Symptomatic Progression: post-Hoc Analysis of a Phase II Trial [abstract]. Arthritis Rheumatol. 2019;71 (suppl 10).
  • Eckstein F, Hochberg MC, Guehring H, et al. Long-term structural and symptomatic effects of intra-articular sprifermin in patients with knee osteoarthritis: 5-year results from the FORWARD study. Ann Rheum Dis. 2021. DOI:https://doi.org/10.1136/annrheumdis-2020-219181.
  • Zeng N, Chen XY, Yan ZP, et al. Efficacy and safety of sprifermin injection for knee osteoarthritis treatment: a meta-analysis. Arthritis Res Ther. 2021;23:107.
  • Eckstein F, Hochberg M, Kraines J, et al. Long-term efficacy and safety of intra-articular sprifermin in patients with knee osteoarthritis: results from the 5-year forward study. Osteoarthritis Cartilage. 2020;28:S77–S78.
  • Van Spil WE, Kubassova O, Boesen M, et al. Osteoarthritis phenotypes and novel therapeutic targets. Biochem Pharmacol. 2019;165:41–48.
  • McAlindon TE, LaValley MP, Harvey WF, et al. Effect of Intra-articular Triamcinolone vs Saline on Knee Cartilage Volume and Pain in Patients With Knee Osteoarthritis: a Randomized Clinical Trial. Jama. 2017;317(19):1967–1975.
  • Bacon K, LaValley MP, Jafarzadeh SR, et al. Does cartilage loss cause pain in osteoarthritis and if so, how much? Ann Rheum Dis. 2020;79(8):1105–1110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.